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Preface

The inherent dangers of change are often summed up in the misquoted Chinese
curse “May you live in interesting times.” The submission procedure for the
16th International Conference of Inductive Logic Programming (ILP 2006) was
a radical (hopefully interesting but not cursed) departure from previous years.
Submissions were requested in two phases. The first phase involved submission
of short papers (three pages) which were then presented at the conference and
included in a short papers proceedings. In the second phase, reviewers selected
papers for long paper submission (15 pages maximum). These were then assessed
by the same reviewers, who then decided which papers to include in the journal
special issue and proceedings. In the first phase there were a record 77 papers,
compared to the usual 20 or so long papers of previous years. Each paper was re-
viewed by three reviewers. Out of these, 71 contributors were invited to submit
long papers. Out of the long paper submissions, 7 were selected for the Ma-
chine Learning Journal special issue and 27 were accepted for the proceedings.
In addition, two papers were nominated by Program Committee referees for the
applications prize and two for the theory prize. The papers represent the diver-
sity and vitality in present ILP research including ILP theory, implementations,
search and phase transition, distributed and large-scale learning, probabilistic
ILP, biological applications, natural language learning and planning and action
learning.

ILP 2006 was held in Santiago de Compostela under the auspices of the
University of Corunna and the University of Santiago de Compostela. The annual
meeting of ILP researchers acts as the premier forum for presenting the latest
work in the field. In addition to the many technical paper presentations, the
invited talks this year were given by some of the most distinguished names
in artificial intelligence research, namely, Vladimir Lifschitz, John McCarthy,
Stuart Russell, Bart Selman and Ehud Shapiro.

We gratefully acknowledge support of the PASCAL network of excellence,
the Spanish National Commissions of Science and Technology, the Galicia-Spain
Secretary of R&D, the University of Corunna, Imperial College London, the
University of Santiago de Compostela, the Spanish Association of AI and the
Machine Learning Journal. Finally we would like to thank the many individuals
involved in the preparation of the conference. These include the Journal Spe-
cial Issue organizer (Simon Colton), the Local Chair (David Losada), the Local
Organizers (Jorge Gonzalez and Miguel Varela) as well as Bridget Gundry, who
organized and distributed the conference poster.

March 2007 Stephen Muggleton
Ramon Otero

Alireza Tamaddoni-Nezhad



Organization

Organizing Committee

Program Chair: Stephen Muggleton (Imperial College, UK)
Program Chair: Ramon Otero (University of Corunna, Spain)
Special Issue Organizer: Simon Colton (Imperial College, UK)
Proceedings Organizer: Alireza Tamaddoni-Nezhad (Imperial College, UK)
Local Organization Chair: David Losada (University of Santiago, Spain)
Local Organizer: Jorge Gonzalez (University of Corunna, Spain)
Local Organizer: Miguel Varela (University of Corunna, Spain)

Program Committee

Hendrik Blockeel, Belgium
Rui Camacho, Portugal
James Cussens, UK
Luc Dehaspe, Belgium
Luc De Raedt, Germany
Saso Dzeroski, Slovenia
Floriana Esposito, Italy
Peter Flach, UK
Tamas Horvath, Germany
Katsumi Inoue, Japan
Andreas Karwath, Germany
Roni Khardon, USA
Joerg-Uwe Kietz, Switzerland
Ross King, UK
Stefan Kramer, Germany
Nada Lavrac, Slovenia
Francesca Lisi, Italy
John Lloyd, Australia
Donato Malerba, Italy
Stephen Muggleton, UK

Ramon Otero, Spain
David Page, USA
Bernhard Pfahringer, New Zealand
Jan Ramon, Belgium
Celine Rouveirol, France
Michele Sebag, France
Jude Shavlik, USA
Takayoshi Shoudai, Japan
Arno Siebes, Netherlands
Ashwin Srinivasan, India
Tomoyuki Uchida, Japan
Lyle Ungar, USA
Christel Vrain, France
Stefan Wrobel, Germany
Akihiro Yamamoto, Japan
Mohammed Zaki, USA
Gerson Zaverucha, Brazil
Filip Zelezny, Czech Republic
Jean-Daniel Zucker, France

Invited Speakers

Vladimir Lifschitz University of Texas at Austin, USA
John McCarthy Stanford University, USA
Stuart Russell University of California at Berkeley, USA
Bart Selman Cornell University, USA
Ehud Shapiro Weizmann Institute, Israel



VIII Organization

Sponsoring Institutions

PASCAL European Network of Excellence
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Sebastian Fröhler and Stefan Kramer

QG/GA: A Stochastic Search for Progol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Stephen Muggleton and Alireza Tamaddoni-Nezhad

Generalized Ordering-Search for Learning Directed Probabilistic
Logical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Jan Ramon, Tom Croonenborghs, Daan Fierens,
Hendrik Blockeel, and Maurice Bruynooghe

ALLPAD: Approximate Learning of Logic Programs with Annotated
Disjunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Fabrizio Riguzzi



X Table of Contents

Margin-Based First-Order Rule Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Ulrich Rückert and Stefan Kramer

Research Papers

Extension of the Top-Down Data-Driven Strategy to ILP . . . . . . . . . . . . . 49
Erick Alphonse and Céline Rouveirol
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Roćıo Garćıa-Durán, Fernando Fernández, and Daniel Borrajo

Frequent Hypergraph Mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
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Actions, Causation and Logic Programming

Vladimir Lifschitz

Department of Computer Sciences
University of Texas at Austin, USA

Reasoning about changes caused by the execution of actions has long been at
the center of attention of researchers in the area of logic-based AI. Logical prop-
erties of causal dependencies turned out to be similar to properties of rules in
logic programs. This fact allows us to apply methods of logic programming to
computational problems related to action and change. Ideas of answer set pro-
gramming, based on the concept of a stable model, turned out to be particularly
useful. In the past they have been applied primarily to the problem of plan
generation. There is now increasing interest also in using logic programming for
learning action descriptions.

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, p. 1, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Challenges to Machine Learning:

Relations Between Reality and Appearance

John McCarthy

Stanford University, USA

Abstract. Machine learning research, e.g. as described in [4], has as its
goal the discovery of relations among observations, i.e. appearances. This
is inadequate for science, because there is a reality behind appearance, e.g.
material objects are built up from atoms. Atoms are just as real as dogs,
only harder to observe, and the atomic theory arose long before there was
any idea of how big atoms were. This article discusses how atoms were
discovered, as an example of discovering the reality behind appearance.
We also present an example of the three-dimensional reality behind a two-
dimensional appearance, and how that reality is inferred by people and
might be inferred by computer programs. Unfortunately, it is necessary
to discuss the philosophy of appearance and reality, because the mistaken
philosophy of taking the world (or particular phenomena) as a structure of
sense data has been harmful in artificial intelligence and machine learning
research, just as behaviorism and logical positivism harmed psychology.

1 Introduction

Apology: My knowledge of of machine learning research is no more recent than
Tom Mitchell’s book [4]. Its chapters describe, except for inductive logic pro-
gramming, programs solely aimed at classifying appearances.

We live in a complicated world that existed for billions of years before there
were humans, and our sense organs give us limited opportunities to observe it
directly. Four centuries of science tell us that we and the objects we perceive are
built in a complicated way from atoms and, below atoms, quarks. Maybe there
is something below quarks.

Science, since 1700, is far better established than any kind of philosophy. Bad
philosophy, proposing to base research entirely on appearances, has stunted AI,
just as behaviorism stunted psychology for many decades.

Here’s the philosophy in a nutshell. As emphasized by Descartes, all a human’s
information comes through the senses. Therefore, it is tempting to try to base
science on relations among sense data and relations between actions that may
be performed and subsequent sense data. [6] is an important source for this
approach. Unfortunately for this approach, humans and our environment are
complicated structures built of vastly smaller objects that our senses do not
directly observe. Science had to discover atoms.

Besides the fundamental realities behind appearance studied by science,
there are hidden every day realities—the three dimensional reality behind two

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 2–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Challenges to Machine Learning: Relations Between Reality and Appearance 3

dimensional images, hidden surfaces, objects in boxes, people’s names, what
people really think of us.

Human common sense also reasons in terms of the realities that give rise
to the appearances our senses provide us. Thus young babies have some initial
knowledge of the permanence of physical objects. This initial knowledge seems
not to be expressed in terms of particular senses. Blind babies have it too, and
so do babies whose sense of touch is compromised by lack of arms. See [7] for
experiments related to initial knowledge.

Perhaps if your philosophy rejects the notion of reality as a fundamental
concept, you’ll accept a notion of relative reality appropriate for the design and
debugging of robots. Thus the robot needs to be designed to determine this
relative reality from the appearance given by its inputs.

We’ll discuss:
Dalton’s atomic theory as a discovery of the reality behind appearance.
A simple problem involving changeable two dimensional appearances and a

three dimensional reality.
Some formulas relating appearance and reality in particular cases.
What can one know about a three dimensional object and how to represent

this knowledge.
The use of touch in finding the shape of an object.
How scientific study and the use of instruments extends what can be learned

from the senses. Thus a doctor’s training involving dissection of cadavers enables
him to determine something about the liver by palpation.

2 Elements, Atoms, and Molecules

Some scientific discoveries like Galileo’s s = 1
2gt2 involve discovering the relations

between known entities. Patrick Langley’s Bacon program [1] did that.
John Dalton’s postulation of atoms and molecules made up of fixed numbers

of atoms of two or more kinds was much more creative and will be harder to
make computers do. That’s the reason for this section of the paper.

The ancient ideas of Democritus and Lucretius that matter was made up from
atoms had no important or even testable consequences. Dalton’s did.

Giving each kind of atom its own atomic mass explained the complicated
ratios of masses in a compound as representing small numbers of atoms in a
molecule. Thus a sodium chloride (NaCl) molecule would have one atom of each
of its elements. Water came out as H2O.

The simplest forms of the atomic theory were inaccurate. [Thus early 19th
century chemists didn’t soon realize that the hydrogen and oxygen molecules
are H2 and O2 and not just H and O.] Computers also need to be able to
propose theories adventurously and fix their inaccuracies later later.

Only the relative masses of atoms could be proposed in Dalton’s time. The
first actual way of estimating these masses was made by Maxwell and Boltzmann
about 60 years after Dalton’s proposal. They realized that the coefficients of
viscosity, heat conductivity, and diffusion of gases as explained by the kinetic
theory of gases depended on the actual sizes of molecules.
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The last important scientific holdout against the reality of atoms, the chemist
Wilhelm Ostwald, was convinced by Einstein’s 1905 quantitative explanation of
Brownian motion as caused by liquid molecules striking a suspended object. The
philosopher Ernst Mach was unconvinced.

Long after the reality of atoms was accepted in science, it was still believed
that individual atoms could not be observed. The first actual pictures of atoms
in the 1990s were a big surprise. Now quarks are accepted as real although an
actual picture of a proton showing the quarks would be even more surprising
and seems quite unlikely, because the quarks move too fast.

Philosophical point: Atoms cannot be regarded as just an explanation of the
observations that led Dalton to propose them. Maxwell and Boltzmann used the
notion to explain entirely different observations, and modern explanations of
atoms are not at all based on the law of combining proportions. In short, atoms
were discovered, not invented.

Reality is usually more stable than appearance, i.e. changes more slowly. For-
mulas giving the effects of events (including actions) are almost always written
in terms of reality. Getting reality from appearance is an inverse problem. Ge-
ologists, oil companies, and astronomers are faced with inverse problems. Their
solution is intellectually difficult and computationally intensive. Human-level AI
systems will also have to be able to infer reality from appearances related to
them in complex ways.

3 Elements, Atoms, Molecules - Formulas

Most likely, it is still too hard to make programs that will discover elements,
atoms, and molecules. Let’s therefore try to write logical sentences that will
introduce these concepts to a knowledge base that has no ideas of them.

We assume that the notions of a body being composed of parts and of mass
have already been formalized, but the idea of atom has not. The ideas of bodies
being disjoint is also assumed to be formalized.

The following formulas approximate a fragment of high school chemistry and
should be somewhat elaboration tolerant [2], e.g. should admit additional infor-
mation about the structure of molecules. The situation argument s is included
only to point out that material bodies change in chemical reactions.

Body(b, s)→ (∃u ⊂ Molecules(b, s))(∀y ∈ u)(Molecule(y)∧ Part(y, b)),

y1 ∈ Molecules(b, s)∧ y2 ∈ Molecules(b, s)∧ y1 �= y2 → Disjoint(y1, y2),

Part(x, b, s) → (∃y ∈Molecules(b, s))¬Disjoint(y, x),

Body(b, s)→Mass(b, s) =
∑

x∈Molecules(b,s) Mass(x, s).
(1)
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Water(b, s) ∧ x ∈Molecules(b, s)
→ (∃h1 h2 o)(Atoms(x) = {h1, h2, o} ∧ h1 �= h2
∧HydrogenAtom(h1) ∧HydrogenAtom(h2) ∧OxygenAtom(o)),

Salt(b, s) ∧ x ∈ Molecules(b, s)
→ (∃na cl)(Atoms(x) = {na, cl} ∧ SodiumAtom(na) ∧ ChlorineAtom(cl)).

(2)

Molecule(x)→Mass(x) =
∑

y∈Atoms(x) Mass(y),

HydrogenAtom(y) →Mass(y) = 1.0,
OxygenAtom(y) →Mass(y) = 16.0,
SodiumAtom(y)→Mass(y) = 23.0,
ChlorineAtom(y) →Mass(y) = 35.5.

(3)

4 Appearance and Reality

Reality is usually more stable than appearance, i.e. changes more slowly. For-
mulas giving the effects of events (including actions) are almost always written
in terms of reality. Getting reality from appearance is an inverse problem. Ge-
ologists, oil companies, and astronomers are faced with inverse problems. Their
solution is intellectually difficult and computationally intensive.

The formulas that follow will need a situation or time argument once we
consider changing appearances.

5 Another Start on Three Dimensional Objects

How can we best express what a human can know and a robot should know
about a three dimensional object? We start from a standard kind of object
with particular types of objects and individual objects defined by successive
approximations.

I propose starting with a rectangular parallelopiped, which we’ll abbreviate
rppd. An object is an rppd modified by dimension information, shape modifi-
cations, attached objects, information about its internal structure, location in-
formation, folding information, information about surfaces, physical information
like mass. Perhaps one should start even more simply with just a size, a ball too
large to be included in the object and too small to include it.

My small Swiss army knife is an rppd, 5cm by 2cm by 1.5cm, rounded in the
width dimension at each end. Its largest surface has a smooth plastic surface
texture, and its other surfaces are metallic with stripes parallel to the long axis,
i.e. the backs of the blades. This description should suffice to find the knife in
my pocket and get it out, even though it says nothing about the blades.

Consider a baby and a doll of the same size. Each may be described as an
rppd with attached rppds in appropriate places for the arms, legs, and head. The
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most obvious and significant differences come in a texture, motion, and family
relationships.

We begin with a little bit about touch rather than with vision. Imagine putting
one’s hand into one’s pocket in order to take out one of the objects.

Touching(Side(1), x)∧ PocketKnife1(x, Jmc)→ Feels(Texture17),

T exture(Side(PocketKnife1)) = Texture17
(4)

For now we needn’t say anything about Texture17 except that it is distinguish-
able from other textures. Textures for touch have similarities to and differences
from textures for vision. Both are very scale dependent.

Touch differs from vision in that the information is usually more partial, e.g.
one can pickup a new object without getting a full image of its shape. One can
get more information about an object by feeling it more.

I made a small informal experiment in which subjects were asked to draw an
object that they could feel inside a paper bag but could not see. The quality of
the drawing was about the same as the subject could make when he was allowed
to see.

6 A Puzzle About Inferring Reality from Appearance

Here’s the appearance. The puzzle is: What is the reality behind the appearance?
Clicking on the < and > signs is how one experiments.

Alas, figures in published proceedings are still not dynamic. To experiment
with this puzzle, go to http://www-formal.stanford.edu/jmc/appearance.html.

The reality is three dimensional, while the appearance is two dimensional.
Those who implement display know that computing appearance is difficult.

Those who do computer vision know that inverting the relation is even more
difficult.

The appearance in the puzzle is a genuine appearance. The reality behind the
appearance is rather abstract. Thus the bodies have no thickness or mass. This
doesn’t seem to bother people; we’re used to abstractions.

We use concepts like like solid body, behind, part of, length, etc.
The first step in solving the version given in the above url is to realize that

partial surfaces of objects are displayed as strings of letters and that the actions
move the strings. One also must realize that some surfaces are hidden behind
others but can be displayed by moving the objects by clicking on the tabs.
Forming wrong initial hypotheses can make the puzzle very difficult.

Some of the relevant concepts may be learned by babies from experience, as
Locke proposed. However, there is good evidence that many of them, e.g. solid
body and behind were learned by evolution and are built into human and most
animal infants.

The quickest and most articulate human solution was by Donald Michie.
Stephen Muggleton and Ramon Otero [5] have solved a simplified version of
the puzzle using inductive logic programming.
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7 Formulas for Appearance and Actions in the Puzzle

We introduce positions. There is a string of 13 positions. Bodies are also repre-
sented by strings of squares of length appropriate to the body. Content(sq) is
either a color or a letter depending on the version of the puzzle.

Body(b) ∧ sq ∈ b ∧ Location(sq, s) = pos
∧(∀b′ �= b)((∃sq′ ∈ b′)(Location(sq′, s) = pos
→ Higher(b, b′)))
→ Appearance(pos, s) = Content(sq).

(5)

Body(b) ∧ sq ∈ b ∧ Location(sq, s) = pos
∧(∀b′ �= b)((∃sq′ ∈ b′)(Location(sq′, s) = pos
→ Higher(b, b′)))
→ (∀sq′ ∈ b)(Location(sq′, Result(ClickCW (pos), s))
= CWloc(Location(sq′, s)))
∧(∀b′ �∈ b)(Location(sq′, Result(ClickCW (pos), s))
= Location(sq′, s)).

(6)

Here’s the formula for the effect of counter-clockwise motion.

Body(b) ∧ sq ∈ b ∧ Location(sq, s) = pos
∧(∀b′ �= b)((∃sq′ ∈ b′)(Location(sq′, s) = pos
→ Higher(b, b′)))
→ (∀sq′ ∈ b)(Location(sq′, Result(ClickCCW (pos), s))
= CCWloc(Location(sq′, s)))
∧(∀b′ �∈ b)(Location(sq′, Result(ClickCCW (pos), s))
= Location(sq′, s)).

(7)

The last parts of the last two formulas tell what doesn’t change.
These formulas give the appearance as a function of the reality and also tell

how the reality is changed by the allowed actions. There can’t be a formula
giving how the appearance changes that only involves the present appearance,
because an action may make a position visible that was previously invisible.
Even taking into account past appearances will only work if the previous actions
have uncovered all of the surfaces.

8 How Should a Computer Discover the Reality?

A point of view common (and maybe dominant) in the machine learning commu-
nity is that the computer should solve the problem from scratch, e.g. inventing
body and behind as needed. It is not dominant in the computer vision community.

Our opinion, and that of the knowledge representation community, is that it
is better to provide computer programs with common sense concepts, suitably
formalized. There is some success, but the formalisms tend to be limited in the
contexts in which they apply. I think, but won’t argue here, that formalizing
context itself is a necessary step.
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Here are two sample formulas relevant to the version of the puzzle presented
at ILP2006 in which the objects were colored rather than displayed as strings of
letters. These formulas are still too specialized to be put in a knowledge base of
common sense.

Color-Appearance(scene, x, s) = Color(Highest(scene, x, s)) (8)

Behind(b2, b1, s) ∧Opaque(b1)→ ¬V isible(b2, s). (9)

Solving the puzzle involves inferring formulas like

Body(b) ∧ Present(b, Scene) ≡ b ∈ {B1, B2, B3, B4},
Color(B1) = Blue ∧ Color(B2) = Orange ∧ Color(B3) = Green

∧Color(B4) = Red,
Length(B1) = 6 ∧ Length(B2) = 8, etc.,
Higher(B1, B2) ∧Higher(B2, B3) ∧Higher(B3, B4),
Higher(B4, Background) ∧ Length(Background) = 13.

(10)

9 Limitations of Our Treatment and Remarks

Actions are the converse of observations. The relations between the muscle move-
ments of an action and its effects in the world are analogous to the relations
between appearance and reality. One thinks in terms of the effects. Evidence:
(1) A person’s handwriting style on the blackboard is the same as that of his
writing on paper, even though the muscle movements are entirely different. (2)
A person can sign his name with his foot on the floor or with his nose in chalk
dust on the blackboard. Thus the monitoring is in terms of effect rather than it
terms of muscle movements.

The lengths and colors of the bodies are assumed not dependent of the sit-
uation. Human language tolerates elaborations such as actions that affect color
better than do present AI formalisms.

The ideas of the last two sections about what knowledge should be given to the
program have benefited from discussions with Stephen Muggleton and Ramon
Otero.

Similar considerations to those of this paper are discussed in connection with
what I call phenomenal data mining [3], the point being that one is interested in
the relations among phenomena in the world and not in the relations among the
assertions in a database. Successful phenomenal data mining will require large
knowledge bases of facts about the world and so will systems good at inferring
reality from experience.

Confession: I have been thinking about inferring reality from experience sepa-
rately from phenomenal data mining. They are really the same problem.

We haven’t considered entities extended in time. These include histories and
more abstract entities like tunes. The telling of a joke is another example.
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Abstract. This paper surveys first-order probabilistic languages
(FOPLs), which combine the expressive power of first-order logic with
a probabilistic treatment of uncertainty. We provide a taxonomy that
helps make sense of the profusion of FOPLs that have been proposed
over the past fifteen years. We also emphasize the importance of rep-
resenting uncertainty not just about the attributes and relations of a
fixed set of objects, but also about what objects exist. This leads us to
Bayesian logic, or BLOG, a language for defining probabilistic models
with unknown objects. We give a brief overview of BLOG syntax and
semantics, and emphasize some of the design decisions that distinguish it
from other languages. Finally, we consider the challenge of constructing
FOPL models automatically from data.

1 Introduction

Many real-world tasks, from identifying objects in images to extracting facts
about people from text documents, require probabilistic reasoning about many
related objects. These tasks often require weighing competing pieces of evidence,
so some form of probabilistic reasoning is necessary. However, the number of
random variables needed to describe such a scenario grows with the number of
objects. Thus, propositional probabilistic languages such as Bayesian networks
(BNs) — which describe a fixed set of random variables, and specify dependencies
and probability distributions for each variable individually — are insufficient.

To represent probabilistic models for such tasks, we need first-order probabilis-
tic languages (FOPLs): probabilistic modeling languages that can model large
families of random variables compactly by abstracting over objects. A significant
number of FOPLs have been proposed over the last fifteen years or so. In Sec-
tion 2, we organize many of the proposed languages into a taxonomy, attempting
to clarify the major ways in which they differ from one another. An important
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desideratum for FOPLs is the ability to represent uncertainty about the number
of objects that exist and the correspondence between observations and underly-
ing objects. In Section 3, we focus on a FOPL that we developed with this goal
in mind: Bayesian logic, or BLOG [13]. In addition to discussing its syntax and
semantics, we highlight some of BLOG’s distinctive design features.

Section 4 turns to the question of learning FOPL models. Parameter esti-
mation for FOPL models is well-understood, and there has been considerable
work on learning the dependency structure of such models. However, an even
more challenging problem remains open: how to automatically hypothesize new
functions or predicates, or even new types of objects, to explain the data.

2 A Taxonomy of FOPLs

2.1 Outcome Spaces

The most basic way in which certain FOPLs differ from others is in their outcome
spaces: that is, the sets of outcomes to which they assign probabilities. In most
FOPLs, the outcome space is a set of relational structures, which specify a set
of objects and some relations (or functions) on these objects. To make this idea
more concrete, consider the following pedagogical example:

Example 1. Suppose we are given a list of papers that have been submitted to a
conference over several years. Each paper is either accepted or not accepted. We
are also given a list of researchers, which includes the primary author of each
paper. Suppose that each researcher can be classified as brilliant or not brilliant,
and the probability that a paper is accepted depends on whether its primary
author is brilliant or not. Given the authorship and acceptance status of certain
papers, we would like to predict which other papers will be accepted.

A relational structure for Example 1 specifies a set of papers, a set of researchers,
a unary predicate Accepted that applies to papers, a unary predicate Brilliant
that applies to researchers, and a function PrimaryAuthor that maps papers to
researchers. Depending on the what aspects of the scenario are known in advance,
the outcomes may share some relational skeleton [3]: for instance, they may all
have the same sets of objects and the same PrimaryAuthor function.

One reason for the diversity of FOPLs is that different communities talk
about relational structures in different ways. In logic, a relational structure is
a logical model structure: a domain of discourse plus an interpretation of a
logical language over that domain. Exanples of FOPLs that define distributions
over logical model structures include Halpern’s logic of probability on possible
worlds [5], relational Bayesian networks (RBNs) [7], PRISM [34], Markov logic
[33] and BLOG [13]. Relational structures can also be thought of as instances
of a relational database schema. This view has led to a distinct set of FOPLs,
including probabilistic relational models (PRMs) [10,3] and relational Markov
networks (RMNs) [36].

The statistics community thinks of possible outcomes in yet another way: as
instantiations of a set of random variables. The statistical analogue of a unary



12 B. Milch and S. Russell

Outcome Space

Specificity

Parameterization

Decomposition

Set of Objects

relational
structures

proofs,
tuples of ground termsnested

data structures

constraints
full distribution

CPDs weights

independent
choices

probabilistic
dependencies

known unknown

IBAL SLPs

Halpern’s logic,
PLPs

RMNs,
Markov logic

PHA, ICL,
PRISM, LPADs

PRMs, BLOG, MEBNBUGS, RBNs, BLPs,
DAPER models

Fig. 1. A taxonomy of first-order probabilistic languages

predicate Accepted is a family of binary-valued random variables Ai, indexed by
natural numbers i that represent papers. Similarly, the function PrimaryAuthor
can be represented as an indexed family of random variables Pi, whose values
are natural numbers representing researchers. Thus, instantiations of a set of
random variables can represent relational structures. Indexed families of random
variables are a basic modeling element in the BUGS system [37], where they are
represented graphically using “plates” that contain co-indexed nodes.

There are two well-known FOPLs whose possible outcomes are not relational
structures in the sense we have defined. One is stochastic logic programs (SLPs)
[17]. An SLP defines a distribution over proofs from a given logic program. If a
particular goal predicate R is specified, then an SLP also defines a distribution
over tuples of logical terms: the probability of a tuple (t1, . . . , tk) is the sum of the
probabilities of proofs of R(t1, . . . , tk). SLPs are useful for defining distributions
over objects that can be encoded as terms, such as strings or trees; they can also
emulate more standard FOPLs [31]. The other prominent FOPL with a unique
outcome space is IBAL [26], a programming language that allows stochastic
choices. An IBAL program defines a distribution over environments that map
symbols to values. These values may be individual symbols, like the values of
variables in a BN; but they may also be other environments, or even functions.

This analysis defines the top level of the taxonomy shown in Figure 1. In the
rest of the paper, we will focus on languages that define probability distributions
over relational structures.
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2.2 Specificity

Among the FOPLs that define distributions over relational structures, the first
distinction we can draw is between languages that fully define a distribution,
and those that only impose constraints on a distribution. As an example of the
latter type, Halpern’s logic of probability on possible worlds [5] allows statements
such as ∀xP (Brilliant(x)) = 0.3. Such statements just specify particular marginal
probabilities: in general, they do not fully define a distribution. Probabilistic logic
programs (PLPs) [21] are essentially a version of Halpern’s language restricted to
Horn clauses, although one can obtain a full distribution from a PLP by finding
the maximum entropy distribution consistent with the PLP’s constraints [12].
The FOPLs that we will discuss from here on all define probability distributions
completely, just as BNs and Markov networks do.

2.3 Conditional Probabilities Versus Weights

In the propositional realm, Bayesian networks are directed models that specify a
conditional probability distribution (CPD) for each variable given some parent
variables, whereas Markov networks are undirected models that use weights to
define the relative probabilities of instantiations. This distinction carries over
to the first-order case. The CPD-based or directed FOPLs include BUGS [37],
PRISM [34], PRMs [10], Bayesian logic programs (BLPs) [8], and BLOG [13].
The principal weight-based or undirected formalisms are relational Markov net-
works [36] and Markov logic [33].

To understand the trade-offs between directed and undirected representations,
consider a directed FOPL model for Example 1 with the following CPDs:

Brilliant(r) ∼ True False
0.2 0.8 , Accepted(p) ∼

Accepted(p)
Brilliant(PrimaryAuthor(p)) True False

True 0.8 0.2
False 0.3 0.7

If the relational skeleton contains just one paper Pub1 and just one researcher Res1,
with PrimaryAuthor(Pub1) = Res1, then this model defines the BN in Figure 2(a).
If there are two papers by Res1, we get the BN in Figure 2(b).

This directed model has several attractive properties. First, the parameters
have clear interpretations as prior and conditional probabilities, and can be

Brilliant(Res1)

Accepted(Pub1)

(a)

Brilliant(Res1)

Accepted(Pub1) Accepted(Pub2)

(b)

Fig. 2. BNs defined by a directed FOPL model whose relational skeleton includes
(a) one paper, or (b) two papers
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estimated from fully observed data using elementary formulas. Even more im-
portantly, the parameters are modular : they reflect causal processes that apply
regardless of the relational skeleton. Thus, if we estimate the parameters using
only examples with one paper per researcher, we will get the same CPDs that we
would get from examples with two papers per researcher. We can also exploit a
related modularity property when performing inference: rather than doing infer-
ence on the whole BN defined by the FOPL model, it suffices to use the subgraph
consisting of the query and evidence nodes and their ancestors [22].

The drawback of directed models is that they must not have any cycles. This
requirement is especially burdensome in FOPLs, because we must ensure that
the probability model is acyclic for every relational skeleton in some class. Also,
certain properties of relations are difficult to describe without creating cycles:
for instance, it is not easy to specify that for all people a and b, if Likes(a, b) is
true than Likes(b, a) is probably true as well.

Undirected models, on the other hand, have no acyclicity constraints. An
undirected model is defined by potential functions that assign weights to in-
stantiations based on some subsets of the random variables. The weight of an
instantiation is the product of the weights assigned by all the potentials; these
weights are then normalized to yield a probability distribution. In the first-order
case, a model specifies potential function templates that apply to all sets of vari-
ables that satisfy certain conditions. For instance, in Example 1, we can include
a potential template that applies to Brilliant(r) for every researcher r, and an-
other template that applies to {Brilliant(r), Accepted(p)} for all pairs (r, p) such
that PrimaryAuthor(p) = r. Figure 3 shows the Markov networks that result when
these templates are applied to relational skeletons with one or two papers.

This undirected FOPL model can reproduce the distributions defined by our
directed model above: we can simply set the potential on Brilliant(r) equal to the
CPD for Brilliant(r), and the potential on {Brilliant(r), Accepted(p)} to the CPD
for Accepted(p). However, suppose we estimate our parameters solely on examples
with one paper per researcher (recall that this caused no problems in the directed

Brilliant(Res1)

Accepted(Pub1)

(a)

Brilliant(Res1)

Accepted(Pub1) Accepted(Pub2)

(b)

Fig. 3. Markov networks defined by an undirected FOPL model whose relational skele-
ton includes (a) one paper, or (b) two papers. Dotted ovals indicate sets of variables
that are in the domain of the same potential function.
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case). Our learning algorithm may arrive at the following parameterization for
the network in Figure 3(a), defining the same joint distribution as the CPD-like
parameterization:

∀ r :
Brilliant(r)
True False
1 1

∀ (r, p) s.t. PrimaryAuthor(p) = r :

Accepted(p)
Brilliant(r) True False

True 0.16 0.04
False 0.24 0.56

The meanings of the parameters in these potential templates are no longer so
obvious. The potential on Brilliant(r) is all 1’s, but the marginal distribution
on Brilliant(Res1) in Figure 3(a) still ends up being (0.2, 0.8). This is because
the event Brilliant(Res1) = True receives a total weight of 0.16 + 0.04 = 0.2 in
the potential over {Brilliant(Res1), Accepted(Pub1)}. This coupling between po-
tentials means that maximum-likelihood parameters for Markov networks can-
not be found with simple formulas: one must use a gradient-based optimization
algorithm [33].

Now consider what happens if we apply the undirected probability model
above to the two-paper network in Figure 3(b). Then the template for pairs
(r, p) such that PrimaryAuthor(p) = r applies twice, and the marginal distribution
on Brilliant(Res1) ends up being proportional to (0.22, 0.82), which normalizes
to about (0.06, 0.94). If the actual probability that a researcher is brilliant is
0.2, then these parameters are sub-optimal: we would not learn them if we had
instances with two papers in our training set.1 Thus, unlike in the directed case,
we need to ensure that the relational skeletons in our training set reflect the
diversity of relational skeletons that we may encounter in test data.

2.4 Independent Choices Versus Probabilistic Dependencies

The category of CPD-based languages for defining complete distributions over
relational structures is still quite large. However, one of the languages we have
mentioned, namely PRISM [34], stands out from the rest in that it represents
only deterministic dependencies and independent random choices. That is, each
variable either has no parents, or has a deterministic CPD. Other FOPLs that
take this approach include probabilistic Horn abduction [27], independent choice
logic [28] and logic programs with annotated disjunctions (LPADs) [39].2

1 The problem actually gets worse if we eliminate the apparently redundant potential
template on Brilliant(r): then there is no parameterization that yields the desired
distribution for all relational skeletons.

2 In LPADs, the independent choices do not set the values of ground atoms directly;
instead, there is one choice for each ground disjunctive clause, and this choice de-
termines which element of the clause’s head will be entailed by the clause’s body.
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It may not be immediately obvious how independent choices could suffice to
represent all the randomness in a probabilistic model. First, consider the di-
rected model that we defined in the previous section for Example 1. To sample
a value for an Accepted(p) variable in that model, we flip a coin with a bias
determined by the value of Brilliant(PrimaryAuthor(p)). The trick used in PRISM
is, conceptually, to flip coins for all possible values of Brilliant(PrimaryAuthor(p))
ahead of time, and then choose which coin flip to use based on the actual
value of Brilliant(PrimaryAuthor(p)). The initial coin flips can be represented by an
auxiliary predicate Accepted given Brilliant(p, b), which represents the value that
Accepted(p) would have if Brilliant(PrimaryAuthor(p)) were equal to b. The predi-
cate Accepted given Brilliant has the following probability model:

Accepted given Brilliant(p, True) ∼ True False
0.8 0.2

Accepted given Brilliant(p, False) ∼ True False
0.3 0.7

Now the probability model for Accepted is deterministic (note that we are treating
Brilliant here as a Boolean function, yielding values in {True, False}):

Accepted(p) = Accepted given Brilliant(p, Brilliant(PrimaryAuthor(p)))

The advantage of this technique is that it completely separates the logical
and probabilistic parts of the language. This separation can be exploited to
obtain efficient algorithms for certain tasks [35]. However, this decomposition
often makes the representation considerably less intuitive.

2.5 Known Versus Unknown Objects

The last distinction in our taxonomy regards whether a language requires the set
of objects to be specified in the relational skeleton, or allows the set of objects
to be unknown. To motivate our discussion of unknown objects, consider the
following example, based on our earlier work on citation matching [24].

Example 2. Suppose we are given a set of citation strings extracted from the
“References” sections of online papers. These citations use a variety of different
formats; they use initials and abbreviations in different places; and they contain
typographical errors. The task is to reconstruct a database of publications and
researchers who are referred to in the citations. This database should contain
just one record for each publication and each researcher, including all the true
attributes of these entities that can be inferred from the citations.

In this example, the sets of publications and researchers that underlie the cita-
tions are not known in advance. Furthermore, we do not know which citations
refer to which publications, or which substrings of citations refer to which re-
searchers. If Cit1 and Cit2 are two citations and PubCited is a function that maps
citations to the publications they refer to, then the ground terms PubCited(Cit1)
and PubCited(Cit2) may or may not denote the same object.
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Most FOPLs assume that the objects are in one-to-one correspondence with
a given set of constant symbols, or with the ground terms of the language. The
CPD-based FOPLs that make such assumptions include BUGS [37] (where the
objects correspond to specified sets of natural numbers), RBNs [7], BLPs [8], and
directed acyclic probabilistic entity-relationship (DAPER) models [6]. One can
model unknown objects to some extent in these languages by adding an Exists
predicate, but one still has to specify all the objects that could exist, and craft
the probability models so that objects for which Exists is false cannot serve as
values for functions or have any probabilistic influence on other objects.

There are three prominent languages that make unknown objects a funda-
mental part of their semantics. One of these is PRMs, which allow uncertainty
about the number of objects that stand in a given relation to an existing object
(e.g., papers written by a researcher) [10], about whether there exists an object
that stands in certain relations to several other objects (e.g., a role for a given
actor in a given movie) [4], and about the total number of objects of a given
type [24]. However, PRMs do not have a unified syntax that supports all these
types of uncertainty. The language of multi-entity Bayesian networks (MEBN)
[11] does have a consistent syntax, and incorporates Exists variables as part of
its semantics. But MEBN still requires the modeler to list all objects that might
exist. The third language that supports unknown objects is BLOG, which we
discuss in the next section.

3 Bayesian Logic (BLOG)

In this section we give an informal overview of Bayesian logic (BLOG) [13], a
language that facilitates defining probability distributions over relational struc-
tures with varying sets of objects. In fact, BLOG’s design makes it an attractive
choice even for scenarios that do not involve unknown objects.

3.1 Syntax

A BLOG model defines a probability distribution over model structures of a
typed first-order language. To this end, the model defines a typed first-order
language for a particular scenario; specifies certain nonrandom aspects of the
scenario; and specifies a probability model for the remaining aspects. The proba-
bility model can be thought of as describing a generative process for constructing
a possible world. This process has two kinds of steps: steps that set the value of
a function3 on some objects, and steps that add new objects to the world.

Figure 4 gives a complete BLOG model for Example 2. We will begin by walk-
ing through the generative process defined by this model; then we will discuss
the syntax in more detail. Line 1 of Figure 4 says that there are three types of
objects in this scenario; then line 2 asserts that four citations are guaranteed to
exist. Line 3 begins the random part of the generative process: a random number

3 We treat predicates as Boolean functions.
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1 type Res; type Pub; type Cit;

2 guaranteed Cit Cit1, Cit2, Cit3, Cit4;

3 #Res ∼ NumResearchersPrior;
4 random String Name(Res r) ∼ NamePrior;

5 #Pub ∼ NumPublicationsPrior;
6 random String Title(Pub p) ∼ TitlePrior;
7 random NaturalNum NumAuthors(Pub p) ∼ NumAuthorsPrior;
8 random Res NthAuthor(Pub p, NaturalNum n)
9 if (n < NumAuthors(p)) then ∼ Uniform({Res r});

10 random Pub PubCited(Cit c) ∼ Uniform({Pub p});
11 random String Text(Cit c)
12 ∼ FormatModel(Title(PubCited(c)),
13 {n, Name(NthAuthor(PubCited(c), n)) for
14 NaturalNum n : n < NumAuthors(PubCited(c))});

Fig. 4. A BLOG model for citation matching

of researchers are added to the world, with this number being sampled accord-
ing to NumResearchersPrior. Then, for each researcher r, a name is sampled
from NamePrior. Line 5 adds a random number of publications to the world.
For each publication, the title and the number of authors are sampled from
appropriate priors (lines 6–7). Then for each publication p and each number
n < NumAuthors(p), a researcher is sampled uniformly at random to serve as the
nth author of p. In line 10 we get to the model for citations: for each citation c,
the publication cited is sampled uniformly from the set of publications. Finally,
the text of each citation is sampled according to a format model that conditions
on the title of the cited paper and the names of its authors.

The syntax in Figure 4 may seem complicated, but in fact it can be explained
fairly simply. A BLOG model is a series of statements, each ending with a semi-
colon. The three statements in line 1 are type declarations ; a BLOG model can
also include function declarations that specify the type signatures of functions
(these are necessary if we use a function before we define its probability model).
Line 2 is a guaranteed object statement that asserts the existence of a set of
distinct objects, and assigns a constant symbol to each one. Along with nonran-
dom function definitions, which do not appear in this model, guaranteed object
statements define a relational skeleton. The probabilistic portion of the model
consists of number statements, which describe steps where objects are added to
the world, and dependency statements, which describe how values are assigned
to functions. These six types of statements constitute the full syntax of BLOG.

Dependency statements and number statements have a rich syntax of their
own. A BLOG model must contain exactly one dependency statement for each
random function. If f is a function with return type τ0 and argument types
τ1, . . . , τk, then a dependency statement for f has the following general form:
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random τ0 f(τ1 x1, . . . , τk xk)
if cond1 then ∼ cpd1(a1,1, . . . , a1,m1)
elseif cond2 then ∼ cpd2(a2,1, . . . , a2,m2)
...
else ∼ cpdn(an,1, . . . , an,mn);

The conditions cond1, . . . , condn−1 are arbitrary first-order formulas that can use
the variables x1, . . . , xk. The elementary CPDs cpd1, . . . , cpdn can be thought of
as functions that take in a list of arguments a1, . . . , am and return a probability
distribution over objects of f ’s return type. More technically, they are the names
of Java classes that implement a certain interface. The arguments a can be logical
terms, such as Title(PubCited(c)); set expressions, such as {Pub p} or {Pub p :
Venue(p) = ILP}; or tuple multiset expressions, such as the one in lines 13–14,
which defines a multiset of pairs consisting of an author number and a name.

Obviously, not all the dependency statements in Figure 4 have this full-
fledged if-then-else form: we allow a number of abbreviations. The expression
“if cond1 then” can be omitted if cond1 is simply True. Also, if a statement
contains some non-trivial conditions but omits the else clause, then the func-
tion gets a default value of null when none of the conditions are satisfied. This
default convention is exploited in line 9.

The number statements in Figure 4 are very simple, but in general, they can
have the same syntax as dependency statements. The only difference is that the
expression “random τ0 f(τ1 x1, . . . , τk xk)” is replaced with #τ , where τ is the
type of object being generated.4 Thus, the number of objects that exist can
depend on other variables.

3.2 Semantics

We have given an intuitive semantics for BLOG in terms of a random process that
generates possible worlds. However, BLOG also has a more formal, declarative
semantics [13]. A BLOG model defines a set of basic random variables : a number
variable for each number statement, and a function application variable for each
random function and each tuple of arguments that exist in any possible world.
The distribution defined by a BLOG model can be represented as a contingent
Bayesian network (CBN) [14] over these basic variables.

A CBN is a directed graphical model in which the edges are labeled with
conditions that specify when they are active. For example, Figure 5 shows a
CBN for a simplified version of the citation model from Figure 4. Note that
the node Text(Cit1) has infinitely many parents, because it may depend on the
title of any publication. Most treatments of Bayesian networks do not provide
well-definedness results for networks that contain infinite parent sets. However,
the edge labels in Figure 5 allow us to see that at most two edges into Text(Cit1)

4 In fact, BLOG supports more complex number statements to model scenarios where
objects generate other objects [13].
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Title((Pub, 1)) Title((Pub, 2)) Title((Pub, 3)) …

Text(Cit1)PubCited(Cit1)

#Pub

PubCited(Cit1) 
= (Pub, 1)

PubCited(Cit1) 
= (Pub, 2) PubCited(Cit1) 

= (Pub, 3)

Fig. 5. A contingent Bayesian network for a simplified version of the BLOG model in
Figure 4. This simplified model has just one citation and does not include researchers.

can be active in any single outcome: one edge from PubCited(Cit1), and one edge
from Title(p) where p = PubCited(Cit1). It turns out that one can obtain stronger
well-definedness results for CBNs than for standard BNs — well-defined CBNs
can even contain cycles, as long as some edges on each cycle have mutually con-
tradictory labels [14]. In [13], we build on these results to give conditions under
which a BLOG model is guaranteed to define a unique probability distribution
over possible worlds.

3.3 Design Features

Distributions over function values. A dependency statement in BLOG can de-
fine a probability distribution for a function, such as NthAuthor or PubCited. By
contrast, many FOPLs — including PRISM [34], relational Bayesian networks
[7], DAPER models [6], and Markov logic [33] — only express uncertainty about
the values of predicates. In a purely logical context, this limitation might be
innocuous: one can simply write PubCited(c, p) rather than PubCited(c) = p. How-
ever, using a predicate to represent a random functional relationship yields an
unnecessarily complicated probability model. Instead of a single object-valued
random variable PubCited(Cit1), one ends up with many binary random vari-
ables PubCited(Cit1, p) — and all these binary variables are mutually dependent,
because exactly one of them must have the value True.

Explicit aggregation. In BLOG, we allow our elementary CPDs to take multisets
as arguments. This eliminates the need for separate “combination functions”, as
used, for example, in BLPs [8]: the burden of aggregation is now on the CPDs.

Contingent dependencies. Dependency statements make a clear distinction be-
tween the values that are passed into elementary CPDs, and the logical formulas
in “if” statements and set expressions, which determine what CPD to apply and
what values to pass into it. This contrasts with the situation in BLPs [8], where
any logical atom that is included in a clause to govern when the clause applies
is also passed into the CPD for the head variable. Also, unlike in the probabilis-
tic knowledge bases of Ngo and Haddaway [22] or the logical BNs of Fierens et
al. [2], the conditions that govern dependencies in a BLOG model do not have
to be nonrandom.



First-Order Probabilistic Languages: Into the Unknown 21

The contingent dependency structure that a BLOG model makes explicit can
be exploited in sampling-based algorithms for approximate inference [14,15].
The basic insight is that algorithms such as likelihood weighting or Markov
chain Monte Carlo only need to instantiate variables that are context-specifically
relevant for the query: that is, variables that are known to be relevant given the
other instantiated variables. Crucially, it is not necessary to instantiate all the
variables that might be relevant for a query in some circumstances — this would
be an infinite set if the query were about Text(Cit1) in Figure 5.

4 Learning in FOPLs

4.1 Parameters

Parameter estimation for FOPLs is well understood: the goal is to find parame-
ters that maximize the likelihood of the data, or that have maximal a posteriori
probability given the data and some Bayesian prior. As we noted in Section 2.3,
parameter estimation tends to be computationally straightforward in directed
models with complete data. For undirected models, and for directed models with
unobserved variables, parameter estimation becomes computationally difficult as
the number of random variables increases. However, this difficulty is common to
all large probabilistic models, not just models defined by FOPLs.

4.2 Dependency Structure

Learning the dependency structure of FOPL models, on the other hand, raises
issues that do not arise in the propositional case. In a Bayesian network, the
dependency structure can be represented simply as a list of parents for each
variable. But in a FOPL, we need a first-order representation of each vari-
able’s parent set. For instance, in Example 1, we need to learn that for all
papers p, Accepted(p) depends on Brilliant(PrimaryAuthor(p)). Also, a variable of-
ten depends on a whole class of parents in a symmetrical way. In Example 1,
if we take multiple authors into account by adding a predicate HasAuthor(p, r),
then Accepted(p) might depend on some aggregation function of the variables
{Brilliant(r) : HasAuthor(p, r)}, such as their average value, or the number that
have the value True.

A well-known paper by Friedman et al. [3] introduces a method for learning
the structure of a probabilistic relational model. In that work, a parent set is
represented as a set of attribute chains, and parents that are reachable by the
same attribute chain are aggregated together using one of a pre-defined library
of aggregation functions. However, there are many other kinds of structures
that we would like to be able to learn (and that are expressible in BLOG): for
example, a variable may depend on different sets of parents in different contexts,
or the parents may be selected using criteria other than single slot chains (e.g., in
Figure 4, Text(c) depends on those variables Name(NthAuthor(PubCited(c), n)) for
n < NumAuthors(PubCited(c))). Also, aggregation functions might be constructed
from more primitive components rather than being chosen from a library.
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There has been significant work on learning more complex selection and aggre-
gation rules for estimating the conditional distribution of a single variable
[30,20,25,38]. However, there does not seem to be any work so far on using these so-
phisticated techniques to learn directed, acyclic FOPL models for multiple
variables (although they have been used to learn cyclic directed models called de-
pendency networks [19]). There has been other work on structure learning for sto-
chastic logic programs [18] and for Markov logic [9], building on inductive logic
programming techniques for searching over logical formulas. We are interested in
developing structure learning algorithms for BLOG models; this line of work might
begin with restricted versions of the BLOG dependency statement syntax.

4.3 Functions and Types

Algorithms that learn the dependency structure of FOPL models typically as-
sume that the functions, predicates, and object types are given. But as John
McCarthy pointed out in his invited talk at ILP 2006, hypothesizing new ob-
jects and relations to explain observed data is a fundamental part of human
learning. For instance, it would be useful to hypothesize a binary predicate on
researchers, which might be called Colleagues(r1, r2), to explain how researchers
co-occur in author lists. There has been considerable work in the inductive logic
programming literature on predicate invention [16], but it is not yet clear how
to generalize it to the probabilistic case. Inventing a new random function (or
predicate) in a FOPL model corresponds to discovering a whole family of hid-
den variables. The task of discovering hidden variables in Bayesian networks has
been investigated by Elidan and Friedman [1]; recently, Revoredo et al. [32] have
taken some steps toward applying these ideas to BLPs.

It may also be possible to improve probabilistic models by automatically hy-
pothesizing new types of objects. For example, to explain recurring substrings
that come after the titles in citations, a system might hypothesize objects that
could be called conferences. One simple form of type invention that has already
been implemented involves clustering some observed objects, and treating the
clusters as a new type of object [29]. In this case, the hypothesized type plays a
predetermined role in the probabilistic model; in the general case, we would like a
system to discover what roles need to be filled. Otero and Muggleton [23] sketch
a learning algorithm for purely logical models that addresses this problem.

5 Conclusion

First-order probabilistic languages combine a principled treatment of uncertainty
with the ability to describe large models formally and concisely. We hope the
taxonomy of FOPLs given in this paper will make the wide landscape of proposed
languages less daunting, and help researchers choose the most appropriate FOPL
for a given application. This paper has highlighted two major areas of FOPL re-
search: the development of languages such as BLOG, which support reasoning
about the unknown objects that underlie a particular data set; and some pre-
liminary work on discovering initially unknown predicates and object types that
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can be used to build more accurate and parsimonious models. In both of these
areas, FOPL research is moving “into the unknown”.
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Since the early days of AI, automated reasoning has been a rather elusive goal.
In fact, up till the early nineties, general inference beyond hundred variable
problems appeared infeasible. Over the last decade, we have witness a qualitative
change in the field: current reasoning engines can handle problems with over a
million variables and several millions of constraints. I will discuss what led to
such a dramatic scale-up, and how progress in reasoning technology has opened
up a range of new applications in AI and computer science in general. I will also
discuss initial progress on the use of learning techniques in reasoning engines
and the remaining challenges for obtaining a true integration of learning and
reasoning.
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Injecting Life with Computers
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Although electronic computers are the only “computer species” we are accus-
tomed to, the mathematical notion of a programmable computer has nothing to
do with wires and logic gates. In fact, Alan Turing’s notional computer, which
marked in 1936 the birth of modern computer science and still stands at its heart,
has greater similarity to natural biomolecular machines such as the ribosome and
polymerases than to electronic computers. Recently, a new “computer species”
made of biological molecules has emerged. These simple molecular computers in-
spired by the Turing machine, of which a trillion can fit into a microliter, do not
compete with electronic computers in solving complex computational problems;
their potential lies elsewhere. Their molecular scale and their ability to interact
directly with the biochemical environment in which they operate suggest that
in the future they may be the basis of a new kind of “smart drugs”: molecular
devices equipped with the medical knowledge to perform disease diagnosis and
therapy inside the living body. They would detect and diagnose molecular dis-
ease symptoms and, when necessary, administer the requisite drug molecules to
the cell, tissue or organ in which they operate. In the talk we review this new
research direction and report on preliminary steps carried out in our lab towards
realizing its vision.
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1 Introduction

To investigate the impact of the occurrence of a phase transition (PT) in the
covering test on the learning success rate, systematic experiments with several
learning algorithms have been conducted on a large set of artificially gener-
ated problems by Botta et al. [3]. The authors generated a set of 451 prob-
lems by choosing each target concept according to its location in the (m, L)
plane with respect to the PT. The “yes”, “no” and “pt” regions are uniformly
visited by varying (m,L) pairs without replacement (m ranges in [5,30] and L
ranges in [12,40]). One important conclusion of their work is that the occurrence
of a PT in the covering test is a general problem for all learning algorithms:
the PT is viewed as an attractor for the heuristic search of any learning al-
gorithms, which are bound to find a concept definition in the PT. Moreover,
for all tested learners, there exists a failure region, starting from the “pt” re-
gion to the beginning of the “no” region, where the learnt theories are seem-
ingly randomly constructed, with no better predictive accuracy than random
guessing.

We note however that only generate-and-test (GT) learning algorithms have
been investigated in this work and that this conclusion has to be qualified in
the case of data-driven learning algorithms. In the GT paradigm, refinements
are only based on the structure of the hypothesis space, independently of the
learning data. Therefore, for a given hypothesis, GT algorithms have to deal
with many refinements that are not relevant with respect to the discrimina-
tion task. On the contrary, data-driven strategies allow to rely on the train-
ing data to prune irrelevant branches of the refinement graph before relying
on the evaluation function and may overcome the problem of plateaus. No-
tably, building on the pioneering work of Winston on near-miss examples [4],
we show that, on the same set of problems as [3], a top-down data-driven
(TDD) strategy can cross any plateau and reach the target concept when-
ever near-misses are supplied in the training set, whereas these near-misses do
not change the plateau profile and do not guide a GT strategy. We conclude
that the location of the target concept with respect to the phase transition
alone is not a reliable indication of the learning problem difficulty, as previously
thought.
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2 Experiments

For that purpose, we re-use the set of learning problems proposed in [3]. No-
tably, we run additional experiments of FOIL on these problems with new set-
tings where the hypothesis space is set so that the value of a given evaluation
function can be directly read from the coverage probability of a hypothesis, as in
figure 1. Although our conclusion on the ability of a generate-and-test approach
in this setting differs from [3], these new experiments allow us to better compare
the behaviour of the generate-and-test and data-driven approaches when facing
plateaus in the evaluation function.

We ran FOIL on problems on m = 5 and m = 10 lines and on the upper-
right corner problems ranging from L ∈ [24, 39] on the m = 18 line and from
m ∈ [18, 29] on the L = 24 line. We also sampled some other problems without
any difference in the results. On all these problems, FOIL is unable to find any
good approximation of the target concepts, being in the “yes”, “no” or “pt”
regions.
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Fig. 1. Coverage rates and plateau profiles for representative problems in the “no”
region with and without near misses

To show why, we plot for a problem the coverage rate of the positive and the
negative examples as well as their standard deviation, depending on the size m
of the hypothesis, averaged over 1000 randomly and uniformly drawn hypothe-
ses. A plateau is materialised by a standard deviation of the coverage rates of
the examples close to 0. For instance, on the (14, 28) problem (figure 1 (a)),
whatever the evaluation function is, the top-down learner will see hypotheses
up to 4 literals long of equal value, or equivalently, it has to cross a plateau of
width 4 before being able to use the evaluation function to discriminate between
hypotheses.

In [1], we show how we can add near-misses to those problems in such a way
that the plateaus are unchanged whereas they guide a top-down data-driven
algorithm to the target concept without search in the hypothesis space. Again,
on all these problems, FOIL is unable to find any good approximation of the
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target concepts, being in the “yes”, “no” or “pt” regions. The plateau profile
does not change (see figure 1 (b)) and a TGT learner cannot take advantage of
the addition of the most informative negative examples. The opposite behaviour
is exhibited by the TDD learner Propal which, by construction, solves all the
problems being in the “yes”, “pt” or “no” region. The learner makes the most
of the learning data by exploiting the information provided by the most specific
negative examples only and therefore use only the near-misses to guide its search.
Note that as the branching factor is reduced to one thanks to the near-misses,
the target concept is exactly identified each time as opposed to evaluating the
quality of the approximation on a test set as for FOIL.

3 Conclusion

Plateau phenomenon problems have been studied recently in the phase transi-
tion framework and an important work has been done on identifying the criteria
of success of learning algorithms [3]. The conclusion drawn from this work was
that the location of the target concept with respect to the PT of the covering
test was conclusive of the difficulty of the learning problems. A failure region was
identified for all the tested learners. We performed additional experiments that
strengthen this result. When the top-down search is conducted in the hypothesis
space that exhibits a PT in its covering test, the “yes” region acts as a plateau
for the heuristic search. This is the pathological case of heuristic search, whether
complete or not, as the plateau must be crossed without being able to differenti-
ate between refinements. In such a case, the greedy TGT learner, FOIL, cannot
solve any of the problems. We showed however that this criterion alone is not re-
liable. As a main result, we showed that a TDD learning algorithm [2], supplied
with near-miss examples was able to solve all problems, although the near-miss
examples are still non-informative for GT algorithms. The plateau phenomena
exhibited in the PT framework is a pathological case of the GT learners as they
only rely on an evaluation function to guide their search, but it is not a reliable
complexity measure for data-driven learners.
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Abstract. The ProbLog (probabilistic prolog) language has been intro-
duced in [1], where various algorithms have been developed for solving
and approximating ProbLog queries. Here, we define and study the prob-
lem of revising ProbLog theories from examples.

1 ProbLog: Probabilistic Prolog

A ProbLog program consists – as Prolog – of a set of definite clauses. However,
in ProbLog every clause ci is labeled with the probability pi that it is true.

Example 1. Within bibliographic data analysis, the similarity structure among
items can improve information retrieval results. Consider a collection of papers
{a,b, c,d} and some pairwise similarities similar(a, b), e.g., based on key word
analysis. Two items X and Y are related(X, Y) if they are similar (such as a and
c) or if X is similar to some item Z which is related to Y. Uncertainty in the data
and in the inference can elegantly be represented by the attached probabilities:

1.0 : related(X, Y) : −similar(X, Y).
0.8 : related(X, Y) : −similar(X, Z), related(Z, Y).
0.9 : similar(a, c). 0.9 : similar(c, b). 0.6 : similar(c, d). 0.7 : similar(d, b).

A ProbLog program T = {p1 : c1, · · · , pn : cn} now defines a probability distri-
bution over logic programs L ⊆ LT = {c1, · · · , cn} in the following way:

P (L|T ) =
∏

ci∈L
pi

∏

ci∈LT \L
(1 − pi).

Unlike in Prolog, where one is typically interested in determining whether a query
succeeds or fails, in ProbLog one is interested in computing the probability that
it succeeds. The success probability P (q|T ) of a query q in a ProbLog program
T is defined by P (q|T ) =

∑
L⊆LT

P (q, L|T ) =
∑

L⊆LT
P (q|L) · P (L|T ) with

P (q|L) =
{

1 ∃θ : L |= qθ
0 otherwise.
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In other words, the success probability of query q corresponds to the probability
that the query q has a proof, given the distribution over logic programs.

Example 2. There are two proofs of related(c, b), obtained using either the base
case and one fact, or the recursive case and two facts. One way of computing the
total probability is to disjoin the proofs first and then sum their probabilities.
For instance, by excluding similar(c, b) in the formula for the second proof the
probability of related(c, b) is obtained by 1.0·0.9+0.8·0.6·0.7·(1−0.9) = 0.9336.
Similar, the probability of related(a, b) is 0.67824.

Reference [1] proposes and evaluates various algorithms for computing and
approximating the success probability of ProbLog queries, whose evaluation is
computationally hard. This problem is tackled by employing a reduction to the
computation of the probability of a monotone DNF formula and the use of bi-
nary decision diagrams (BDDs). ProbLog is applied to biological network analy-
sis problems. Other interesting application areas are hypertext and web mining,
communication networks, and related domains.

2 Revising ProbLog Theories

Large ProbLog theories can be obtained automatically in many of the domains
mentioned above, e.g., by statistical similarity, relevance or link analysis. Un-
fortunately, large theories are hard to utilize, both computationally and by end
users, and there is need to revise them to smaller ones. Furthermore, new in-
formation can often improve the quality of an initial ProbLog theory, and also
guide in reducing its size. For instance in our bibliographic example, user feed-
back might have revealed that items a, b and c, d are related but d, b are actually
not. Thus, the initial theory in Example 1 should be revised.

The present paper introduces the revision problem for ProbLog theories:

Definition 1. Given a ProbLog theory S (a set of ProbLog clauses), a set of
positive and negative examples P and N in the form of ground goals, a constant
k ∈ N, find a theory T ⊆ S of size at most k (i.e. |T | ≤ k) that maximizes the
likelihood L(E|T ) =

∏
e∈E L(e|T ) of examples E = P ∪N where

L(e|T ) =
{

P (e|T ) if e ∈ P
1− P (e|T ) if e ∈ N

(1)

In the ProbLog theory revision problem, we are interested in finding a small
number of clauses from T that maximizes the likelihood of the data. Here a
ProbLog theory T is used to determine a relative class distribution: it gives
the probability P (e|T ) that any given example e is positive. (This is subtly
different from specifying the distribution of (positive) examples.) The examples
are assumed to be mutually independent, so the total likelihood is obtained
as a simple product. For an optimal ProbLog theory T , the probability of the
positives is as close to 1 as possible, and for the negatives as close to 0 as possible.
However, because we want to allow misclassifications, but with a high cost, in
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order to avoid overfitting, to effectively handle noisy data, and to obtain smaller
theories, one has to slightly redefine P (e|T ) in Equation (1), for instance as

P̂ (e|T ) = max
(
min[1− ε, P (e|T )], ε

)
for some ε > 0.

This avoids the possibility that the likelihood function becomes 0, e.g., when a
positive example is not covered by the theory at all.

It is now instructive to look at specific instances of this problem:

– k > |S|: find the maximum likelihood theory. Closely corresponds to tradi-
tional theory revision in ILP; however, in the current ProbLog setting, only
deletions of clauses are allowed as operations on the theory.

– k < |S|: theory compression.
– k < |S| and |N | = 0: find the k clauses from S that contribute the most to

the success probabilities of the positives.

3 The ProbLog Theory Revision Algorithm

The ProbLog theory revision algorithm performs a greedy search in the space of
subsets of S. In each step, the algorithm finds the clause whose deletion results
in the best likelihood score, and then deletes it. This process is continued until
both |T | ≤ k and deleting further clauses does not improve the likelihood.

Example 3. Reconsider Example 1 and assume that the user feedback revealed
one positive example related(a, b), and one negative example related(c, b).
With ε = 0.05, their initial likelihood is 0.045. The greedy approach first deletes
0.9 : similar(c, b) and thereby increases the likelihood to 0.2008. The probabil-
ity of the positive example related(a, b) is now 0.3024 (was 0.67824), and that
of the negative example related(c, b) is 0.336 (was 0.9336).

An important computational optimization is that the BDDs are reused. Their
costly construction has to be done only once in the very first iteration; later on
only the truth values of variables in the existing BDD are manipulated.

Experimental results on revising a large, real-world ProbLog theory for link
mining are promising and appear in the longer version of this paper.

4 Conclusion

We have introduced a new type of theory revision problem involving probabilistic
theories and sketched an algorithm for solving it. The problem setting is related
to probabilistic ILP approaches such as Sato’s PRISM and Muggleton’s SLPs,
which – if at all – have focused on learning theories from scratch. Only Revoredo
et al. considered revision of BLPs. The revision problem as introduced here is
closely related to the traditional ILP one but employs probabilistic principles to
guide the search. Furthermore, by using the constant k it is possible to influence
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the degree of compression that is desired. An important question for further
research is concerned with allowing for other operations than deletions of clauses.
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1 Introduction and Background

One of the central goals in computational and systems biology is to understand
the mechanisms of gene transcriptional regulation on a system-wide level. The ef-
forts are often based on high-throughput genomic data of model organisms such as
S. cerevisiae. The goal of this work is to learn a model of gene regulation predict-
ing under which conditions genes are up- or down-regulated. Our starting point
is the model of Middendorf et al. [1], where the presence of transcription factor
binding sites (motifs) in the gene’s regulatory region and the expression levels of
regulators (e.g., transcription factors or protein kinases) are used to predict gene
regulation. It is clear that in this formulation, important information related to
gene regulation is missing, for instance due to post-translational modifications.
Thus, information integration could be extremely useful to fill in and take into
account various missing pieces of information related to gene regulation.

Uncovering the multi-relational nature of the problem, we first rephrased it
in a logic-oriented framework and defined predicates for various interdependent
pieces of information (see below). A logic-oriented representation enables the
integration of various data sources: genome-wide cDNA microarray data, motif
profile data from regulatory sequences and more. In particular, it is easy to take
into account information that might, in any way, be related to gene regulation, for
instance, protein-protein interactions and functional categorizations. Given the
data in a logical representation, we can apply a variety of algorithms and systems
for learning classification and regression models in logic, mostly developed in the
field of inductive logic programming (ILP). We chose the Tilde system [2] for
learning logical decision trees, since it is known to perform well in terms of
runtimes and error rates.

2 Data and Representation

The approach is tested on the S. cerevisiae data by Gasch et al. [3]. As stated
above, the goal is to learn a prediction model for the regulatory response of genes
under different environmental conditions. In the following, we briefly present the
predicates/relations in our logical formulation of the problem. In its most ba-
sic version, we have three different predicates, gene(GeneId, CondId, Level),
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hasTFBS(GeneId, BsId), and expression(RegId, CondId, RegLevel). gene
(GeneId, CondId, Level) gives the expression level for each gene under a spe-
cific experimental condition. As in the study by Middendorf et al., gene expres-
sion is discretized and mapped onto three distinct values +1 (up-regulated), 0,
and -1 (down-regulated). The learning task is to predict the expression level for
a given gene under a certain condition, given some background information (see
below). The dataset contains information about 1,411 genes, 173 experimental
conditions, and 54,183 instances. The relation hasTFBS(GeneId, BsId) holds
information about the binding sites for each gene found in its regulatory region,
taken from the TRANSFAC database. The regulatory region of each gene is
represented as a vector containing the binding sites for this gene.

Thus, we are able to identify subsets of genes according to binding mo-
tifs, which are assumed to share regulation behavior. The relation expression
(RegId, CondId, RegLevel) gives the expression levels of regulators (e.g., tran-
scription factors or protein kinases) under certain experimental conditions. In
our representation, the regulators are a subset of all genes. In the experiments
described in this paper, we used a set of 53 different regulators. The goal of
the application is to predict the expression level for a given gene under a given
condition (predicate gene(GeneId, CondId, Level)), in terms of the predi-
cates hasTFBS(GeneId, BsId) and expression(RegId, CondId, RegLevel).
With these predicates, the problem posed by Middendorf et al. is translated into
first-order predicate logic, amenable for logical approaches to machine learn-
ing. Additionally to the two basic predicates, we enrich the representation with
further predicates:

– assignedToFuncat(GeneId, FunCatId), containing all annotated FunCat
[4] terms for gene GeneId and all parent FunCat terms of this term,

– hasPPI(GeneId, GeneId), containing binary protein-protein interactions
from the MIPS database [5] for each gene whose expression state is to be
predicted, and hasTFPPI(RegId, RegId) containing binary protein-protein
interactions of the regulators themselves.

3 Summary of Experimental Results and Conclusion

In Table 1, a summary of our experimental results with single, bagged and
boosted Tilde decision trees can be found. In the first row, the baseline accuracy
of 54.7% indicates that the models clearly improve upon random guessing. The
second row shows the reference result by Middendorf et al. [1], where alternat-
ing decision trees (ADTs) were applied to a propositional version of the basic
data (without the additional predicates). We included the results both with and
without the use of FunCat terms. Since the predicates related to protein-protein
interactions are not frequently used in the trees, we omitted them altogether in
the experiments presented here. Given the same information, boosted decision
trees are on par with ADTs (another boosting technique), whereas FunCat terms
substantially improve the performance, both in predictive accuracy and compact-
ness. Moreover, it is possible to extract the functional categories affected by the
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Table 1. Summary of experimental results: data (with/without FunCat), model, run-
time (in s), predictive accuracy (in %), sensitivity, specificity, area under ROC curve
(AUC) and number of nodes in tree(s)

Data Model Runtime Acc. Sens. Spec. AUC # Nodes

all baseline —– 54.7 0.0 100.0 50.0 0

wo funcat ADTs [1] —– 88.5 —– —– —– —–

all single Tilde tree 185 85.1 87.1 83.5 92.8 186
all 10x bagging 951 85.1 87.3 83.4 93.0 1,201
wo funcat 10x bagging 921 80.6 78.6 82.4 88.7 1,388
all 10x boosting 2,658 91.2 91.2 91.3 97.7 2,491
wo funcat 10x boosting 2,052 88.4 87.6 89.1 96.3 2,620

experimental conditions, together with important transcription factor binding
sites and transcription factors for these categories from the induced trees. For
a detailed description of the data and a qualitative discussion of the results, we
have to refer to the long version of the paper [6].

Summing up, we propose a systems biology application of ILP, where the goal
is to predict the regulation of a gene under a certain condition from binding site
information, the state of regulators, and additional information. We believe that
decoding the regulation mechanisms of genes is an exciting new application of
learning in logic, requiring data integration from various sources and potentially
contributing to a better understanding on a system level.
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Abstract. A search approach is presented, based on a novel algorithm
called QG (Quick Generalisation). QG carries out a random-restart
stochastic bottom-up search which efficiently generates a consistent
clause on the fringe of the refinement graph search without needing
to explore the graph in detail. We use a Genetic Algorithm (GA) to
evolve and re-combine clauses generated by QG. Initial experiments with
QG/GA indicate that this approach can be more efficient than standard
refinement-graph searches, while generating similar or better solutions.

1 Introduction

There is a long-standing and increasing interest in stochastic search methods in
Inductive Logic Programming (ILP) [4]. Stochastic methods have been explored
both for clause evaluation (e.g. [5]) and for searching the space of candidate
clauses (e.g. [6]). Most search techniques within ILP are based on clause refine-
ment. Such searches are typically time-consuming, requiring the testing of a large
number of inconsistent clauses. For example, it can be shown [3] that on a range
of learning problems around 96% of the clauses considered by Progol are incon-
sistent. The low average density of consistent clauses motivates an investigation
in this paper into a novel algorithm called QG (Quick Generalisation).

2 QG Algorithm

The following definitions are used to describe the QG algorithm in Figure 1.

Definition 1 (Progol refinement setting). Let S = 〈B, E ,L,�〉 be Progol’s
ILP setting as defined in [2]. Let E = 〈E+, E−〉 consist of a set of positive and
negative examples (ground unit clauses) respectively. The “top” clause, denoted
by �, is the maximal� element in L. The “bottom” clause, denoted by �e,S , is
the least�,L element such that B,�e,S |= e. Refinement of clause C, denoted by
ρe,S(C), is the set of maximal�,L clauses D such that C � D � �e,S .

Definition 2 (S-consistency). Given S = 〈B, E ,L,�〉, e ∈ E and � � C �
�e,S we say that C is S-consistent iff B, E , C is satisfiable.

Definition 3 (Head-connectness). A definite clause h ← b1, .., bn is said to
be head-connected if and only if each body atom bi contains at least one variable
found either in h or in a body atom bj, where 1 ≤ j < i.
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Quick Generalisation (QG) algorithm
Input: Bottom clause �e,S and setting S

R is a random head-connected permutation of �e,S
Output: Reduce R wrt S

Reduce algorithm
Input: Clause C = h ← b1, ..bn and setting S

Res is C
While there is an unseen cutoff atom bi in the body of Res

For bi find minimal support set Si = {b′
1, .., b′

m} ⊆ {b1, .., bi+1}
such that h ← Si, bi is head-connected

Res is h ← Si, bi, Si−1
where Si−1 is b1, .., bi−1 with Si removed

Repeat
Output: Reduced clause Res

Fig. 1. Quick Generalisation (QG) algorithm

Definition 4 (Minimal support set). Let h ← B be a definite clause and B
be a set of atoms. S ⊆ B is a minimal support set for b from B iff h ← S, b
is head-connected and there does not exist a set S′ ⊂ S for which h ← S′, b is
head-connected.

Definition 5 (Fringe). Clause C is in Fringe(e,S) iff it is head-connected and
for every D it is the case that C ∈ ρe,S(D) implies D is not S-consistent.

Definition 6 (Profile and cutoff atom). Let C = h ← b1, . . . bn be a definite
clause and B be background knowledge. Ei ⊆ E− is the ith negative profile of C,
where Ei = {e : ∃θ, e = hθ,B |= (b1, . . . , bi)θ}. bi is the cutoff atom iff i is the
least value such that Ei = ∅.

The QG algorithm (Figure 1) works by randomly permuting the given clause
body and then applying to the result the deterministic “Reduce” algorithm.
The result is a randomly constructed “fringe” clause (see Definition 5).

3 QG and QG/GA in Progol

The QG algorithm described in the previous sections can be used for efficiently
sampling from consistent clauses. A simple integration of QG in Progol can be
realised by replacing Progol’s A∗ search by a QG sampling mechanism which
returns the clause with highest positive compression from a sample of consistent
clauses. Clauses generated by the simple QG sampling mechanism lack diversity
and also it is very likely that the optimal solution is not among them. We also
examine a more advanced setting in which a Genetic Algorithm (GA) is used
to evolve and re-combine clauses generated by QG. In this setting QG is used
to seed a population of clauses processed by the GA. The GA-ILP setting used
in the present study is similar to the one described in [7]. In the present study,
the occurrences of literals from the bottom clause are directly encoded as bit
strings (as described as further work in [7]). In a long version of this paper [3]
QG and QG/GA have been tested on a range of problems. These include a set
of problems from [1] with varying concept sizes (i.e. m6.l12 to m16.l12). Table 1
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Table 1. Predictive accuracies and learning times for different search algorithms on a
set of learning problems with varying concept sizes from 6 to 16. Density of consistent
clauses is taken as being the proportion of consistent clauses in the A∗ search (Cs(%)).

m A∗ QG GA QG/GA
Cs(%) A(%) T (s) A(%) T (s) A(%) T (s) A(%) T (s)

6 31.71 98 3.22 99.5 3.89 99.5 5.83 99.5 10.32
7 3.36 99.5 633.16 99.5 45.11 99.5 12.99 99.5 86.51
8 1.05 100 1416.55 100 175.03 100 13.92 100 169.55
10 0.0015 97.5 25852.80 99 242.22 95.5 74.68 99 1064.22
11 0.36 80 37593.20 91 774.02 99 30.37 99.5 110.15
14 0 50 128314.00 69 4583.25 79.5 529.67 88.5 1184.76

16 4 × 10−6 59 55687.44 77.5 4793.01 74 297.93 89.5 4945.20

shows predictive accuracies and average learning and testing times for different
algorithms. According to this table, in most cases QG has found a solution with
a similar or better accuracy than the A∗ search in significantly less time. These
results also suggest that we can get a better predictive accuracy by combining
QG and GA (e.g. for m = 14 and m = 16). According to the table, the efficiency
and accuracy advantages of QG and QG/GA are more evident when the density
of consistent clauses (Cs%) is low.

4 Conclusions

In this paper we presented a search approach based on a novel algorithm called
QG (Quick Generalisation). Initial experiments indicate that when the propor-
tion of consistent clauses is small, QG and QG/GA are more efficient than
standard refinement-graph searches, while still generating the same (or similar)
solutions in most cases. The QG can be easily adopted for any ILP system which
uses a bottom clause or a template for generating the hypotheses. These include
ILP systems which use some form of Inverse Entailment.
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Abstract. Recently, there has been an increasing interest in directed probabilis-
tic logical models and a variety of languages for describing such models has been
proposed. Although many authors provide high-level arguments to show that in
principle models in their language can be learned from data, most of the pro-
posed learning algorithms have not yet been studied in detail. We introduce an
algorithm, generalized ordering-search, to learn both structure and conditional
probability distributions (CPDs) of directed probabilistic logical models. The al-
gorithm upgrades the ordering-search algorithm for Bayesian networks. We use
relational probability trees as a representation for the CPDs. We present experi-
ments on blocks world domains, a gene domain and the Cora dataset.

1 Introduction

An important class of probabilistic logical models are directed models that are relational
extensions of Bayesian networks. A variety of languages for describing such models has
been proposed: Probabilistic Relational Models (PRMs) [4], Bayesian Logic Programs
(BLPs) [5], Logical Bayesian Networks [2] and many others. Although most authors
describe high-level algorithms to learn models in their language or provide arguments
to show that such algorithms can be developed, there are still many problems that have
not been studied in detail. One such problem is how to deal with recursive dependencies.
Consider for example the blocks world [1]: we have a set of blocks that can be stacked
on top of each other, the on/2 predicate is used to represent a certain state. Obviously
some (recursive) dependencies hold between all the different on/2 facts. In undirected
models one could state that each on/2 fact depends on all other on/2 facts, but in
directed models this is not allowed since it would lead to cycles. Hence, learning a
directed probabilistic logical model of the blocks world is a challenging problem.

In this paper we introduce an algorithm, generalized ordering-search, to learn both
structure and conditional probability distributions of directed probabilistic logical mod-
els. Our algorithm is based on the ordering-search algorithm of Teyssier and Koller
[8] for learning propositional Bayesian networks. Our contribution is that we upgrade
this algorithm to the relational case and investigate the use of relational probability
trees [3,6] as compact and interpretable models of conditional probability distributions
(CPDs). We will use the terminology of Logical Bayesian Networks (LBNs) [2] but our
discussion applies equally to other directed probabilistic logical models such as PRMs
and BLPs. More details can be found in the full paper [7].
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2 Generalized Ordering-Search

When learning directed models one of the main problems is to avoid cycles. For propo-
sitional Bayesian networks (BNs) this can be done by assuming a causal ordering on
the set of random variables (RVs). Given such an ordering, we can learn for each RV
X a probability tree [3] that identifies which of the preceding RVs are most relevant
for X (these will be X’s parents in the BN), and specifies how they influence X (the
CPD). However, we usually do not know the optimal ordering. One solution is to do
hill-climbing through the space of all orderings and in each step apply the above pro-
cedure to learn a BN, until an accurate BN is encountered. This is known as ordering-
search [8].

Ordering-search cannot be applied directly to the relational case for two reasons.
First, we cannot simply learn a separate CPD for each ground RV because we want
our model to generalize over the domain (set of constants), i.e. the model should be
on the predicate-level instead of on the ground-level. Second, we do not want to learn
the optimal ordering on the set of ground RVs but rather a model of this ordering that
generalizes over the domain.

To deal with the above two problems, we adapt the original ordering-search algo-
rithm in two ways. First, instead of learning a separate CPD for each RV, we learn for
each probabilistic predicate a single so-called generalized conditional probability func-
tion (GCPF). Basically, a GCPF for a predicate p is a function that takes as input any
set of RVs (the possible parents) plus a target RV T built from p and that returns a set of
parents for T as well as a CPD for T given these parents. Second, instead of searching
through the space of orderings until a good ordering is found, we now search through
the space of orderings only to collect information about the likelihood of different or-
derings (using the learned GCPFs) and afterwards we use this information to learn a
model of the optimal ordering. Note that an ordering on the RVs together with an ap-
propriate set of GCPFs fully specifies an LBN. We now briefly explain the two steps of
our algorithm in more detail.

In the first step we learn for each probabilistic predicate a GCPF under the form of
a logical probability tree [3,6]. LetR denote the set of all ground RVs. More precisely,
for each predicate p we learn a tree Tgcpf such that for any target T ∈ R built from p,
any assignment vT to T , any set E ⊆ R of known evidence RVs and any assignment
vE to the RVs in E , Tgcpf (T, vT , E , vE ,R) = P̂ (T = vT | E = vE) expresses the
probability that T has value vT given the values of all RVs in E . To learn such a tree
we first generate training data by sampling data from random orderings (i.e. randomly
selecting T and E) and then apply the TILDE system adapted to learn probability trees
[3] on this dataset. The final result of this step is a set of GCPFs that can be used together
with any ordering to determine an LBN.

In the second step we learn a model of the optimal ordering. Concretely, we use
TILDE to learn a logical decision tree that specifies for any pair of RVs their best or-
dering. The training data for this regression tree is generated by searching through the
space of orderings and computing for each considered ordering the difference in like-
lihood when swapping two adjacent RVs in this ordering (this difference in likelihood
is the target of the regression). To compute the likelihood of an ordering we use the
GCPFs of the previous step. Using the obtained regression tree we can determine the
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optimal ordering for any pair of RVs and hence indirectly also for any number of RVs.
This optimal ordering together with the GCPFs fully determines an LBN.

3 Experiments

We evaluated our approach on four datasets: a simple artificial dataset about the inheri-
tance of genes, two datasets derived from relational reinforcement learning experiments
on the blocks world [1] and the Cora dataset. We compared the results of generalized or-
dering search with the results obtained when learning CPDs for a given expert ordering
and for a random ordering.

The main conclusion from our experiments is that generalized ordering-search suc-
ceeds in learning an ordering that performs approximately equally well (in terms of
likelihood) as the expert orderings and considerably better than random orderings. Also,
the complexity (size) of the learned CPDs for generalized ordering search is similar to
that for the expert orderings and smaller than for random orderings.
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Abstract. In this paper we present the system ALLPAD for learning
Logic Programs with Annotated Disjunctions (LPADs). ALLPAD mod-
ifies the previous system LLPAD in order to tackle real world learning
problems more effectively. This is achieved by looking for an approxi-
mate solution rather than a perfect one. ALLPAD has been tested on
the problem of classifying proteins according to their tertiary structure
and the results compare favorably with most other approaches.

1 Introduction

Logic Programs with Annotated Disjunctions [1] are a relatively new formalism
for representing probabilistic information in logic programming. They have been
recognized as one of the simplest and most expressive languages that combine
logic and probability [2].

In [3] the definition of a learning problem for LPADs has been proposed to-
gether with an algorithm for solving it called LLPAD. However, LLPAD does not
work well on non-toy problems because it relies on the exact solution of a large
constraint satisfaction problem. On real world problems such a solution may not
exist or may be too expensive to find. Therefore in this paper we propose the sys-
tem ALLPAD (Approximate Learning of Logic Programs with Annotated Dis-
junctions) that modifies LLPAD in order to be able to solve real world problems
by looking for a solution that “approximately” satisfies the learning problem.

2 ALLPAD

ALLPAD learns ground LPADs in five phases. The first and the third are the
same as those of LLPAD. The second and the fourth modify those of LLPAD
and the fifth one is new.

In the first and second phases ALLPAD looks respectively for definite and
disjunctive clauses that satisfy a number of constraints reported in [3]. In the
third phase the disjunctive clauses found in the second phase are annotated with
probabilities by exploiting theorem 1 of [3].

In the fourth phase ALLPAD solves an optimization problem in which a subset
of the found disjunctive clauses is selected so that the resulting program assigns

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 43–45, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



44 F. Riguzzi

to the input interpretations a probability that is as close as possible to the one
given. This is done by exploiting theorem 2 of [3]. Since the optimization problem
can be expressed as a linear problem, we can use mixed-integer programming
(MIP) techniques. If no perfect solution exists, a non zero optimum will be found.

However, the optimization problem is NP-hard and thus solvable only for
small instances. To overcome this problem, we exploit the possibility of setting
a time limit offered by many MIP packages. In this way, ALLPAD looks for the
best solution given the available time.

To make sure that an admissible solution will be found within the time limits,
the complete search in the space of bodies performed by LLPAD in the second
phase is given up for an incomplete search strategy, beam search. The heuristic
to be used for ranking bodies is the sum of the probabilities of the interpretations
where the body is true. This heuristic ensures that the clauses that apply only to
a small number of improbable interpretations are discarded and the dimension
of the optimization problem is reduced.

In the fifth phase, the definite clauses not mutually exclusive with the selected
disjunctive clauses are removed.

3 Experiments

ALLPAD was applied to the problem of predicting the tertiary structure of pro-
teins by classifying them into one of the SCOP classes [4]. Each protein is described
by a sequence of secondary structure elements. The elements are either of the form
he(Type,Length,Position) or of the form st(Orientation,Length,Position). The last
argument is an ordinal number indicating the position in the sequence.

The dataset available [5] (kindly provided by Kristian Kersting) has the fol-
lowing distribution of examples into classes (class,examples): (fold1, 721), (fold2,
360), (fold23, 274), (fold37, 441), (fold55, 290).

ALLPAD can be used for classification as other probabilistic model learners:
a model is learned for each class and an example is assigned the class whose
model gives the highest probability to the example.

In order to learn an LPAD that describes a class, the interpretations given
as input to the system are annotated each with the same probability given by 1
over the total number of interpretations in the training set.

Proteins are modeled with LPADs as stochastic processes: the structure at posi-
tion p is predicted on the basis of the structures in a number of previous positions.
To this purpose, ALLPAD learns programs containing rules having all the possi-
ble structures with position equal to p in the head and a conjunction of structures
in the body with positions belonging to the set S(p, k) = {p−1, p−2, . . . , p−k}
for a given k.

Since the constraint solving phase finds only an approximate solution, the theo-
ries learned are tested in an approximate way: if for a sequence position no learned
rule is applicable, the marginal probability of the atom in the class is used.

The accuracy of the learned LPAD is compared with the accuracy of a näıve
Bayes classifier obtained in the following way: the approximate testing procedure
is applied by using for all positions the marginal probability in the class.
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Two experiments were performed using 10-fold cross validation.
In both experiments we used Xpress-Optimizer by Dash Optimization for

solving the MIP problem. The time limit has been set to 1 hour for each class in
the first experiment and to 100 minutes for each class in the second experiment.

The other important parameters are: the value of k (the number of previous
positions to consider), set to 4; the size of the beam, set to 100, and the maximum
number of bodies to be explored for each clause template, which has been set to
100 in the first experiment and to 125 in the second experiment. The experiments
have been performed on a PC with an Athlon XP 2600+ processor at 2138 Mhz,
1GB of RAM and Windows 2000.

In the two experiments ALLPAD reached respectively an average accuracy
of 85.14% and of 85.67%, while the näıve Bayes approach reached an average
accuracy of 82.79%. A cross-validated paired two-tailed t test was performed
for comparing the accuracy of ALLPAD to that of näıve Bayes and the null
hypothesis of equivalence can be rejected with 98.3% probability for the first
experiment and with 98.6% probability for the second experiment.

The results available in the literature regarding accuracy on datasets in the
same domain are: 74% in [5], 83.6% in [6], 76% and 73% in [7] and 92.96% in
[8]. The results of ALLPAD compare favorably with all results apart from the
last one, even if the system is not specifically tailored to learning sequences.
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1 Introduction and Motivation

Learning sets of first-order rules has a long tradition in machine learning and
inductive logic programming. While most traditional systems follow a separate-
and-conquer approach, many modern systems are based on statistical considera-
tions, such as ensemble theory, large margin classification or graphical models. In
this work, we frame relational learning as a statistical classification problem and
apply tools and concepts from statistical learning theory to design a new statisti-
cal first-order rule learning system. The system’s design is motivated by the goal
of finding theoretically well-founded answers to some of the greatest challenges
faced by first-order learning systems. First, using strict binary-valued logic as a
representation language is known to be suboptimal for noisy, imprecise or uncer-
tain data and background knowledge as frequently encountered in practice. As
in many other state-of-the-art rule learning approaches [1], we therefore assign
weights to the rules. In this way, a rule set represents a linear classifier and one
can optimize margin-based optimization criteria, essentially reducing the misclas-
sification error on noisy data. Since we aim at comprehensible models, we employ
margins without the kernel trick. Second, the problem of finding a hypothesis
that explains the training set is known to be NP-hard even for the simplest
possible classifiers, from propositional monomials to linear classifiers. To avoid
the computational complexity of optimizing the empirical training error directly,
we use a feasible margin-based relaxation, margin minus variance (MMV), as
introduced recently for propositional domains [2]. MMV minimization is linear
in the number of instances and therefore well-suited for large datasets. Third,
in multi-relational learning settings, one can formulate almost arbitrarily com-
plex queries or clauses, to describe a training or test instance. Thus, there is
a potentially unlimited number of features that can be used for classification
and overfitting avoidance should be of great importance. We derived an error
bound based on MMV, giving us a theoretically sound stopping criterion con-
trolling the number of rules in a weighted rule set. The rule generation process is
based on traditional first-order rule refinement and declarative language bias. It
is possible to choose from a variety of search strategies, from a predefined order
of clauses to rearranging the order based on the weights attached to clauses in
the model so far. The system is implemented as a stand-alone tool integrating a
Prolog engine.
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2 First-Order Rule Learning as Model Selection

In order to give a more formal definition of the setting, we assume that the
instances are drawn i.i.d. according to a fixed but unknown distribution D. D
ranges over X × Y, where X is the set of all possible instances (i.e., sets of
tuples from several relations), and Y := {−1, 1} contain the target labels. A
sample X = {x1, . . . , xm} of size m is drawn. Furthermore, we assume we al-
ready have a (possibly infinite) repository of first-order rules R = {r1, r2, . . .},
where a rule rj : X → [−1, 1] assigns either -1 or 1 to each instance. A rule can
depend on any arbitrary number of relations. The rules are enumerated from a
language bias declaration according to some chosen search strategy. Let xi(j)
denote the result of the application of rule j on instance xi. If we consider only
the first n rules, we can represent the ith instance by the vector of rule val-
ues xi := (xi(1), xi(2), . . . , xi(n))T . Likewise, a weighted rule set can be given
by a weight vector w ∈ [−1, 1]n. An individual rule set q assigns class label
sgn(wT xi). Note that the weight vector defines a hyperplane separating [−1; 1]n

into two half-spaces so that rule sets in our setting are related to linear classifiers
and perceptrons. Since the usual approach of optimizing the empirical error is
computationally infeasible and prone to overfitting, we are optimizing a related
quantity, the mean margin minus the variance of the margin (margin minus vari-
ance – MMV [2]). This is motivated by the observation that ideally one would
want to maximize the average distance from the separating hyperplane to the
training instances and to minimize the sample variance of these distances. More
formally: given an instance (x, y) let μw(x, y) := wT x ·y denote the margin. The
margin is positive, if the instance is correctly classified by q and negative other-
wise. Then, the empirical margin is μ̂w := 1

m

∑m
i=1 μw(xi, yi) and the empirical

variance is σ̂w := 1
m−1

∑m
i=1(μw(xi, yi) − μ̂w)2. Using this notation, one can

look for weight vectors w that maximize μ̂w − σ̂w subject to the constraint that
‖w‖p = 1. With p = 1, most weights are set to zero, thus, the rule sets tend to be
small. Greater values of p (typically values > 1 and ≤ 2) distribute the weights
more evenly among the rules. MMV maximization is a quadratic optimization
problem and can be solved in time linear in the number of instances.

The success of this algorithm obviously depends to a large degree on the
choice of the rule repository, and, in particular, on its size. If the repository is
too small, the algorithm will most likely underfit, if it is too large, it will overfit.
To overcome this dilemma we start with a small repository, then iteratively
increase its size. We calculate the optimal MMV weight vector for each size and
use a concentration inequality [2] to gain an estimate of the structural risk, i.e.
the risk of overfitting. The best repository is the one which minimizes the sum
of empirical and structural risk. Ideally, the rules that are generated during this
iterative procedure should be as informative as possible about the prediction
task. Since rules that are generated early are less likely to be pruned away by
the structural risk estimation procedure, the user should adjust rule generation
to build assumedly informative rules first. This provides an easy, but powerful
way of providing uncertain and imprecise background knowledge for a particular
learning task. The rules are generated from typical language bias declarations
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including types and modes of variables as well as conjunctions of literals. The
system starts with a set of basic rules and repeatedly applies refinement operators
to obtain new rules from existing rules. The operators add a literal or conjunction
of literals to an existing rules to create a new one, or combine two existing rules
disjunctively.

Depending on the way new rules are generated, the method can be categorized
as genuine relational learning or propositionalization scheme. In particular, the
system can be configured to generate new rules depending on their coverage (for
instance, filtered by some minimum coverage), depending on the diversity of
coverage, depending on the class and depending on the rules so far. For instance,
more sophisticated operators are able to filter new rules having a high mutual
information with respect to an existing rule. The system provides plug-ins to
incorporate different representation languages, such as a module for evaluating
mathematical terms, graphs or a whole Prolog engine.

3 Summary of Experimental Results and Conclusion

We performed three series of experiments: In a first batch on the mutagenesis
data, we evaluated the sensitivity of the method on variations of the parameters
and determined default settings. In particular, it turned out that the performance
with p set to one is consistently worse than with p > 1. This is an indication that
many different structural features contribute equally to the performance of the
classifier. Another finding is that the performance does not degrade as more and
more rules are added. In other words, overfitting does not seem to occur too eas-
ily. In a second batch of experiments on seven small molecule datasets, we showed
that margin-based rule learning performs favorably compared to margin-based
ILP approaches using kernels. In our third batch, variants of propositionaliza-
tion and relational learning are tested on the task of bioavailability prediction.
To investigate the “feature efficiency” of those variants, we plot the training set
and test set accuracies against the number of rules added.

In summary, we propose relational rule learning based on margins. The new
approach optimizes the mean margin minus its variance. Error bounds can be
derived to obtain a theoretically sound stopping criterion. Overall, MMV op-
timization seems to be a useful new learning scheme that can be adapted to
various data types via plug-ins, and can be adjusted to the noise level via para-
meters. As the optimization is linear in the number of instances, it should also
scale up well for the analysis of larger datasets.
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Abstract. Several upgrades of Attribute-Value learning to Inductive
Logic Programming have been proposed and used successfully. However,
the Top-Down Data-Driven strategy, popularised by the AQ family, has
not yet been transferred to ILP: if the idea of reducing the hypothesis
space by covering a seed example is utilised with systems like PRO-
GOL, Aleph or MIO, these systems do not benefit from the associated
data-driven specialisation operator. This operator is given an incorrect
hypothesis h and a covered negative example e and outputs a set of
hypotheses more specific than h and correct wrt e. This refinement oper-
ator is very valuable considering heuristic search problems ILP systems
may encounter when crossing plateaus in relational search spaces. In
this paper, we present the data-driven strategy of AQ, in terms of a lgg-
based change of representation of negative examples given a positive seed
example, and show how it can be extended to ILP. We evaluate a basic
implementation of AQ in the system Propal on a number of benchmark
ILP datasets.

1 Introduction

In Inductive Logic Programming (ILP), various learning strategies from
Attribute-Value (AV) learning have been adapted: to name a few, top-down
induction of decision trees in the TILDE system [4], top-down induction of rules
in the systems FOIL [28], PROGOL [24], Aleph [35] and MIO [26]. Bottom-up
data-driven algorithms, based on the least-general-generalisation (lgg) operator
(also known as most-specific generalisation) have also been implemented (see
[17] for the main results). However, the Top-down Data-Driven (TDD) strategy
has very few incarnations and is not used in ILP. Its emblem is the family of
AV systems AQ [22]. The search is top-down in the space of hypotheses more
general than or equal to a particular example which is named in this context
a seed example. If the idea of reducing the hypothesis space by covering a seed
example is utilised with systems like PROGOL, Aleph or MIO, these systems do
not benefit from the associated TDD operator. They address the learning prob-
lem within the generate-and-test paradigm (computing refinements based on the
structure of the search space only) : they have to deal with many refinements,
for a given hypothesis, that are not relevant with respect to the discrimination
task. The TDD operator is the dual of the lgg operator in the sense that, given
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an incorrect hypothesis h and a covered negative example e, it outputs a set of
hypotheses more specific than h and correct with respect to e. This refinement
operator is described in [22] as a set of extension-against rules for computing
refinements of boolean attributes, numerical attributes, nominal as well as hier-
archical ones. For example, a rule for using a boolean attribute att for refining
an incorrect hypothesis is:

If att = val in the seed and att �= val in a covered negative example then att = val is

a valid refinement

Relying on the training set allows a TDD strategy to have a branching factor
which is necessarily smaller than or equal to the branching factor of a generate-
and-test strategy searching in the same hypothesis space. This makes this strat-
egy very appealing for ILP which is known to be prone to important plateau
phenomena in heuristic search (see e.g. [13,2]). As a special case and as advocated
by Winston [39] (see also [34]), a TDD learning algorithm can take advantage of
negative examples that differ from positive examples by only one attribute, the
so-called near-misses, to reduce the branching factor to 1 during the heuristic
search. Ultimately, a TDD algorithm learning from a dataset provided with all
near-misses of the target concept would converge to the concept without search,
generating only one refinement each step.

In the rest of the paper, we present the TDD strategy of the AQ system
in terms of a lgg-based change of representation of negative examples given a
positive seed example. After applying this representation change, the instance
space and the hypothesis space are merged into a simpler hypothesis space, and
learning can rely on an algebraic formalisation of AQ’s extension against rules.
The second contribution of the paper concerns the implementation of the TDD
in relational languages as complex as Datalog with negation and constrained
variables, which is complete for OI-subsumption [1]. We propose a formalisa-
tion of the problem of computing the set of “nearest-miss” lggs between two
relational examples, which is at the core of the TDD strategy, as a Weighted
Constraint Satisfaction Problem [8]. In the last part of the paper, we present an
implementation of the basic AQ strategy as given by Clark and Niblett [5] (often
referred as AQR) in Propal and we evaluate it on a number of ILP benchmark
datasets. Although this version of Propal does not include any noise-handling
mechanism, its performance is quite competitive with respect to state of the art
ILP generate-and-test systems.

2 Change of Representation of Learning Data in the
TDD Strategy

2.1 Top-Down Data Driven Strategy

The AQ system [22] is a top-down covering learning algorithm. AQ’s outer loop
is a classical covering algorithm that iterates while some positive examples are
still uncovered. Its inner-loop randomly selects an uncovered positive example,
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the seed example, denoted as s in the rest of the paper. AQ then performs
a top-down data driven beam search to build a set of maximal and correct
generalisations of s, given the set of negative examples. For a given negative
example e−, if a candidate hypothesis h in the beam covers e−, h is minimally
specialised in order to reject it, while still covering s. Throughout the paper,
E+ and E− denote the set of positive and negative examples of the learning
problem, Lh denotes the hypothesis space, � the coverage relation between a
hypothesis of Lh and an example, ≥h the partial order between hypotheses of
Lh (generality relationship). Ls ⊆ Lh is the space of generalisations of the seed
s. The TDD operator can be formally defined as follows.

Definition 1 (TDD operator). Let s ∈ E+, h ∈ Ls, e
− ∈ E−, ρs(h, e−) =

{h′ ∈ Ls | h ≥h h′ and h′ �� e−}

This operator can be seen as the dual of the lgg operator [27]: given an incorrect
hypothesis h and a covered negative example e−, it outputs a set of maximally
general hypotheses more specific than h and correct with respect to e−, with the
additional constraint that each of these specialisations of h should still cover s.

The fact that each minimal specialisation of h should cover a seed example
amounts to map the initial search space of the learning algorithm onto the space
of generalisations of the seed example. Looking for a hypothesis of Lh that
both covers s and rejects e− can be equivalently performed by looking for a
generalisation of s that rejects lgg(s, e−). By definition of the lgg [27], we have
h � s ∧ h � e− ⇔ h ≥h lgg(s, e−). Equivalently, by contraposition, we have
h �� s ∨ h �� e− ⇔ h �≥h lgg(s, e−). As the TDD strategy is biased towards
generating hypotheses that cover s, h �� e− ⇔ h �≥h lgg(s, e−).
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Fig. 1. Bias of Lh towards the covering of a positive example

This lgg-based representation change transforms the initial learning problem
(E,�,≥h,Lh) into a new learning problem (Es,≥h,≥h,Ls), Es being the new
set of examples where each example e ∈ E is reformulated into lgg(s, e). In
this new problem, the instance space and the hypothesis space are merged, as
illustrated in figure 1 for a simple AV learning problem. The leftmost part of
figure 1 shows three training instances, described in terms of two AV attributes.
In the initial search space, each of the involved attributes has domain {a, b, ?},
where ′?′ denotes any value in the domain, meaning this attribute should be
dropped from the hypothesis. The three initial examples s, e−1 and e−2 are each
mapped in the new search space Ls (right part of figure 1), here the power-set
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of the seed example. By definition, s is mapped to the lower bound of Ls, e−1 is
mapped to the top node of Ls

′00′ (lgg(s, e−1 ) =′??′ ≥h
′ab′) and e−2 is mapped

to ′01′ (lgg(s, e−2 ) =′?b′ ≥h
′ab′).

This reformulation is interesting, because it shows that the so-called
“extension-against” rules correspond to an algebraic resolution of the learning
problem in a boolean lattice1 and have broader applications than attribute-value
learning as long as the generalisation space of the seed is isomorphic to a boolean
lattice as shown in figure 1. In the rest of the paper, we will refer to the TDD
refinement operator instead of the “extension-against” rules to point that we
take into account the lggs of the negative examples directly in the generalisation
space of the seed. It is therefore possible to reformulate the specialisation step
of AQ as shown in the algorithm of figure 2.

FindBestRule(s,E−,E+)
G := {�} % top element of Lh

BestRule := ∅
While G �= ∅

G′ := ∅
For each g ∈ G

G := G \ g

If g is correct and score(g,E+) ≥ score(BestRule,E+) Then
BestRule := g

Else
% computation of the nearest-miss
NM := g % by definition g ≥h NM

For each e− ∈ E−

If lgg(s, e−) nearer-miss than NM Then NM := lgg(s, e−)
G′ := G′ ∪ ρs(g, NM) % specialisation using the TDD refinement operator

G := k best hypotheses from G′ % beam search
Return BestRule

Fig. 2. AQ’s specialisation loop algorithm for a given seed s

In order to make the specialisation step efficient, the algorithm makes the
most of the partial ordering of negative examples to handle most informative
negative examples only. First of all, only most specific negative examples in
Es are useful: in the toy example of figure 1, e−2 is more specific than e−1 so
rejecting e−2 also rejects e−1 . In this simple example, there is only one candidate
solution obtained by applying once the TDD operator: hypothesis ′10′ in the
boolean space, corresponding to the hypothesis ′a?′ in the initial search space.
If several most specific negative examples are available at that step, which are
incomparable by definition, we give preference to the one that is closer to s than
1 The “extension-against” rules are actually more general and can consider distributive

lattices as the product of a boolean lattice with interval lattices and chains whenever
numerical and hierarchical attributes are involved [1]. In the present work, we use
the product of boolean and interval lattices but in this section, we only discuss the
logical part.
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any other negative examples as it yields the smallest branching factor for ρs

(see e.g. [34,5]). We name it the nearest-miss and we define it as a most specific
element with respect to a total pre-order named nearer-miss. It is reflexive,
transitive, total, but not antisymmetric.

Definition 2 (nearer-miss). Let s ∈ Lh be the seed example, x, y ∈ Ls, the
distance d(s, y) be the number of attributes’ values that differ between s and y.
x is nearer-miss than y iff (x ≤h y) ∨ (y �≤h x ∧ d(s, x) ≤ d(s, y)). It is a total
pre-order on the elements of Ls. A least element (most specific) with respect to
this total pre-order is a nearest-miss.

The nearer-miss pre-order induces an equivalence relation between elements of
Ls which are incomparable under ≥h and at the same distance from the seed.
Note that we define the nearer-miss relation as a linear extension of the partial
order ≥h to deal with redundancy in Es, such that the nearest-miss is necessarily
a most specific element of Es wrt ≥h. This is necessary when we deal with
numerical attributes. For example, if we have only one numerical attribute a
and a seed a = 1 and two negative examples a = 2 and a = 3 reformulated as
a ∈ [1, 2] and a ∈ [1, 3], although both negative examples are at a distance of 1
from the seed, a ∈ [1, 2] is nearer-miss than a ∈ [1, 3] as it is more specific and
its rejection will reject the other negative example.

On figure 1, it can be seen that the maximal branching factor of a top-down
generate-and-test operator is 4 without the seed bias, and 2 when only consid-
ering specialisations covering s. The branching factor of the TDD operator is 1,
as the lgg of e−2 with s is actually a Winston’s near-miss. Note that even in the
worst case (only far-misses are provided, i.e. negative examples that maximally
differ from the seed example), the branching factor of the TDD operator cannot
exceed the one of the top-down generate-and-test operator biased to cover a seed
example. We now will go on to discuss the extension of the TDD strategy to ILP.

3 Extension of the TDD Strategy to ILP

The TDD strategy, which is biased towards covering a seed example, relies on the
reformulation of each negative example e− as its lgg with the seed. The strength
of the strategy is that the instance space is merged into the hypothesis space
which forms a simple boolean lattice (or a product of a boolean lattice and inter-
val lattices in the case of numerical learning). In this lattice, the TDD refinement
operator can efficiently discriminate the negative examples as explained in the
previous section. Our approach to upgrade this TDD strategy to ILP consists
in working in a seed generalisation space with the same algebraic structure and
then computing lggs between the negative examples and the seed in such a space.
Such algebraic structures can be obtained in relational languages, although with
the cost of increased complexity, and sometimes incompleteness.

In this work, we target languages as expressive as non-recursive Datalog
clauses with negation [21]. In order to deal with numerical data, we add con-
straint variables to the language (see e.g. [32]) and classically set their generali-
sation language to the lattice of convex intervals for numerical variables [22].
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A substantial number of works have been done on computing lggs in restric-
tions of first-order logic under several partial orders [27,14,17,12]. One partic-
ularly interesting partial order is the Object Identity (OI) subsumption. It is
stronger than the well-known θ-subsumption, because matching substitutions
are limited to be injective, that is, each variable has to be bound to a different
object. It has been shown in [38,10] that a Datalog space lower-bounded by a null
element (the seed here) under OI-subsumption is isomorphic to a boolean lattice:
the set of generalisations of a clause is its power set (up to a variable renaming)
and the complete generalisation operator is the dropping-literal rule. An im-
portant corollary is that the TDD strategy is complete under OI-subsumption.
However, as noted for example in [14,18], the generalisation of two examples
is not unique, as opposed to AV learning, and computing their least general
generalisation will yield several lggs, as shown in figure 3.

s : west(T ) ← car(T, V1), rectangular(V1),
car(T, V2), #wheels(V2, 2),
car(T, V3),¬roof(V3), short(V3), circular(V3).

e− : west(T ′) ← car(T ′, V ′
1),¬roof(V ′

1 ), rectangular(V ′
1),

car(T ′, V ′
2),¬roof(V ′

2 ), #wheels(V ′
2 , 3), circular(V ′

2),
car(T ′, V ′

3), triangular(V ′
3), short(V ′

3).

Fig. 3. A train-like problem with a positive example s and a negative example e−

This figure describes a toy relational learning problem inspired by the Michal-
ski’s trains. The semantic is classical: s is a train having three cars, one is rec-
tangular, the other has two wheels and the last one does not have a roof, is
short and circular. Using s as a seed example, it is equivalent to consider the
new learning problem where all lggs between the seed and the negative examples
have to be rejected in the generalisation space of s. This new problem is given in
figure 4 as well as its propositional encoding, given the OI-subsumption order.

In fact, any partial order can be used within the TDD strategy, like θ-
subsumption, as soon as the generalisation space of the seed example is limited
to a boolean lattice for the logical part (the logical part of a clause excludes
literals with numerical variables). This is at the expense of completeness, as it is
known that the space of generalisation under θ-subsumption is infinite even in
Datalog [27] and that no ideal refinement exists for this partial order [37]. Various
restrictions in generate-and-test approaches have been proposed to define opera-
tional restrictions of θ-subsumption, the most usual one consisting in restricting
the generalisation space of the clause to its power-set (see e.g. [24,35]), which
exactly corresponds to the applicability condition of the TDD strategy. Let us
now provide an example that illustrates this lgg-based representation change as
well as a sketch of the algorithm to compute these lggs.
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e−
1 : west(T ) ← car(T, V1),

car(T, V2), #wheels(V2, [2, 3]),
car(T, V3),¬roof(V3).

e−
2 : west(T ) ← car(T, V1), rectangular(V1),

car(T, V2),
car(T, V3),¬roof(V3), circular(V3).

e−
3 : west(T ) ← car(T, V1), rectangular(V1),

car(T, V2), #wheels(V2, [2, 3])
car(T, V3), short(V3).

s car(T, V1) rec(V1) car(T, V2) #w(V2, N) N car(T, V3) ¬roof(V3) short(V3) cir(V3)

e−
1 1 0 1 1 [2, 3] 1 1 0 0

e−
2 1 1 1 0 - 1 1 0 1

e−
3 1 1 1 1 [2, 3] 1 0 1 0

Fig. 4. A train-like problem and its reformulation with s as seed example, with OI-
subsumption as partial ordering on the relational search space

3.1 Example

In order to exemplify the approach, let us solve the learning problem pre-
sented in figure 3. This problem is reformulated by replacing e− by the three
clauses resulting from the computation of lgg(s, e−) as shown in figure 4. For in-
stance, e−2 in figure 4 represents the lgg obtained with the matching substitution
{V1/V ′

1 , V2/V ′
3 , V3/V ′

2} between s and e− of figure 3. The learning algorithm
is that of figure 2. In this example, we instantiate the beam size k to 2. The
candidate literals to refine the top clause produced by the rejection of the first
negative example e−1 are:

{rectangular(V 1); N ∈ (−∞, 3); short(V3); circular(V3)}

Those produced by the second negative example e−2 are:

{#wheels(V2, N); short(V3)}

Note that the examples e−1 , e−2 and e−3 are incomparable with respect to ≥h, but
according to algorithm of figure 2, we chose to reject e−2 first, as e−2 is nearer-miss
than both e−1 and e−3 . Specialising G against e−2 produces only two refinements,
which corresponds to the size of the beam. Selecting nearest-miss examples has
the advantage that the algorithm relies as little as possible on the evaluation
function to select the best refinements of the current hypothesis. G specialises
into two hypotheses with the addition of the literal #wheels(V2, N) and the
literal short(V3). The most general specialisation of G is produced by adding
all the literals necessary to get linked hypotheses.2 The following new bound is
obtained:
2 The discriminant literal selected by the TDD strategy do not necessarily produce

a connected clause. We assume in this example and in this work that adding the
literals to produce linked clauses, such as car(T, V2) and car(T, V3), is simple.
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G = { west(T ) ← car(T, V2), #wheels(V2, N);

west(T ) ← car(T, V3), short(V3)}

We now take each hypothesis in G and check for their correctness. None of them
are correct and both cover the nearest-miss e−3 . After another specialisation step,
we obtain the new G bound:

G = { west(T) ← car(T, V2), #wheels(V2,N),N ∈ (−∞,3);

west(T ) ← car(T, V2), #wheels(V2, N), car(T, V3), circ(V3);

west(T) ← car(T, V2), #wheels(V2,N), car(T,V3),¬roof(V3);

west(T ) ← car(T, V3), short(V3),

car(T, V2), #wheels(V2, N), N ∈ (−∞, 3);

west(T ) ← car(T, V3), short(V3), circular(V3);

west(T ) ← car(T, V3), short(V3),¬roof(V3)}

Let us now assume that the evaluation function selects the two hypotheses in
boldface in the previous list: the first hypothesis is correct and is a candidate
solution. The second one is incorrect (it covers e−1 ) and will in turn be specialised.
Finally, after specialising and pruning G, we obtain at the end of this refinement
step:

G = { west(T ) ← car(T, V2), #wheels(V2, N), N ∈ (−∞, 3);

west(T ) ← car(T, V 1), rectangular(V 1), car(T, V2), #wheels(V2, N),

car(T, V3),¬roof(V3)}

After three refinement steps, we have a subset of all correct hypotheses with
respect to the initial relational example e−. We can notice that the second hy-
pothesis has six literals which would have required six refinement steps with a
generate-and-test approach a la FOIL or PROGOL.

3.2 Computation of a Nearest-Miss of the Seed from a Negative
Example

At the core of algorithm of figure 2 is the computation of nearest-miss examples
among lggs between the seed and the negative examples. In this section, we show
that their computation is equivalent to the resolution of Weighted Constraint
Satisfaction Problems. After recalling the main results on computation of lggs
under OI, we extend them to handle constraint variables and give an example
of encoding for the learning example given above.

A complete algorithm to compute all lggs under OI-subsumption has been
proposed by [18,12]. This algorithm is based on the observation that these lggs are
maximally incomparable substructures embedded into Plotkin’s lgg. Both works
propose a graph encoding of the problem such that computing lggs under OI-
subsumption amounts to extract all incomparable maximal cliques in the graph.
We build upon their result but provide some simplifications and an extension
of the algorithm to handle constraint variables. First, let us note that not all
lggs are needed to solve the problem as shown in the algorithm of figure 2:



Extension of the Top-Down Data-Driven Strategy to ILP 57

i) only those more specific than the hypotheses in the current G bound are
necessary; ii) only the nearest-miss lgg is used for the current specialisation step
(see section 2). The problem is then to compute the maximum-clique, that is the
largest maximal one, in the corresponding graph. Second, it can be seen that
their graph formulation is the consistency graph of a Constraint Satisfaction
Problem (CSP). This equivalence between the CSP and the clique problem on
the CSP consistency graph is well-known [15,30]. The CSP formulation is more
natural as it is equivalent to the one used for computing the covering test in
ILP [9]. Therefore, finding the nearest-miss lgg between a seed and a negative
example corresponds to finding the largest subset of variables in s which admits
a consistent variable assignment.

This formulation needs to be adapted for handling constraint variables. To
take that information into account, we need to add a valuation structure to
the CSP which is known in the literature as a Weighted CSP. Weighted CSP
(WCSP) extends the CSP framework by associating costs to tuples. These costs
give preferences among partial assignments. The usual task is to find a complete
consistent assignment with minimum cost, which is NP-hard. Informally, to com-
pute a nearest-miss, we define a cost as the number of literals and constraint
variables’ values of the seed example that are not matched onto the negative
example. Concerning the numerical literal #wheels(V2, 2) in the seed, there are
three options: either there is an exactly matching literal in the negative example,
the associated cost is then 0. If there is a literal of the form #wheels(V2, N) with
N �= 2 in the negative example, the cost is 13. Finally, it may also be the case
that the literal is unmatched, in that case the cost is 2.

Due to lack of space, we refer to [8,7] for a detailed description of WCSPs
and the associated algorithms. Here, we briefly give the definition of a Weighted
CSP and illustrate the encoding of the problem of nearest-miss computation of
figure 3.

Definition 3 (Weighted CSP). A binary WCSP is a tuple (k, X, D, C). X
and D are the variables and domains as in classical CSP. C is a set of cost
functions. A binary constraint Cij assigns costs to assignments of variables i
and j, ranging from 0 to k. A unary constraint Ci assigns costs to assignments
of variable i, ranging from 0 to k. The cost of a tuple t, noted cost(t), is the
sum of all its associated costs. When a constraint C assigns a cost greater
than or equal to k to a tuple t (cost(t) ≥ k), it means that C forbids t, oth-
erwise t is allowed by C, with the corresponding cost. A tuple is consistent if
cost(t) < k.

For computing the nearest-miss of the seed example s from the example e−

(see figure 3), we have the corresponding WCSP, omitting the head literal for
convenience:

3 This way of handling cost does not take into account partial ordering between nu-
merical values in the negative examples and this has to be handled through post-
processing.
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Variables Domains

car(T,V1) 1 : nm 0 : car(T′,V′
1) 0 : car(T ′, V ′

2) 0 : car(T ′, V ′
3)

rectangular(V1) 1 : nm 0 : rectangular(V′
1)

car(T,V2) 1 : nm 0 : car(T ′, V ′
1 ) 0 : car(T ′, V ′

2) 0 : car(T′, V′
3)

#wheels(V2, 2) 2 : nm 1 : #wheels(V ′
2 , 3)

car(T,V3) 1 : nm 0 : car(T ′, V ′
1 ) 0 : car(T′,V′

2) 0 : car(T ′, V ′
3)

¬roof(V3) 1 : nm 0 : ¬roof(V ′
1 ) 0 : ¬roof(V′

2)

short(V3) 1 : nm 0 : short(V ′
3)

circular(V3) 1 : nm 0 : circular(V′
2)

Literals of the seed s (i.e., the variables of the WCSP) are shown in the first
column of the table. For each literal of s, we describe candidate matching literals
in e−, i.e., the domains of the WCSP variables. Matching a literal corresponds
to satisfying a unary constraint. To each literal of e−, we associate the corre-
sponding unary cost of matching it. In order to account for unmatched seed
literals, we use an additional value nm for not matched, which indicates that
the seed literal is not matched and does not belong to the lgg. For instance,
if the literal short(V3) is unmatched, this will have a cost of 1. The binary
costs (not shown here) are the same as for a CSP encoding of the subsump-
tion test: they define that a pair of matchings is compatible to ensure that the
solution tuple is a lgg of the seed and the negative example. To each matched
literal of the seed, we associate a substitution θi. A pair (θi, θj) is compatible
iff the substitution θi.θj is a valid substitution under the partial order consid-
ered. The corresponding cost is zero or k otherwise. The solution of the WCSP
which leads to construct e−2 is outlined in boldface in the table, this solution
has cost 3. e−2 is among the solutions of lowest cost and is used to compute
(west(T )← car(T, V2), #wheels(V2, N)). The computation of the next nearest-
miss more specific than this hypothesis is computed by removing the nm values
from the domain of the two literals car(T, V2) and #wheels(V2, N), thus forcing
them to be part of the nearest-miss.

4 Related Works

A first version of the Propal algorithm has been presented in [3], where the
link between the TDD strategy and Propal was not made and no formalisation
was proposed. Moreover, the algorithm could not deal with numerical data.
It was also presented as a propositionalisation system and we plan to further
investigate in the future the link between propositionalisation and computation
of lggs between examples and a seed.

A first comparison has to be made with the learning systems PROGOL, Aleph
and MIO. As we said, they use the same search space as Propal, by the mean of
a seed example, but are rooted in the generate-and-test paradigm and do not use
the TDD strategy. They have to deal with many refinements during the search
that are not relevant with respect to the discrimination task.

A related approach to our system is the system STILL [33]. STILL is a propo-
sitionalisation system [19] which upgrades the attribute-value learning algorithm
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DiVS [31]. DiVS makes use of the extension-against rules of Michalski in the fol-
lowing manner. For each example e (positive and negative) DiVS builds G(e),
the bound G covering e and rejecting all the negative examples with respect
to its class by applying the extension-against rules. Each G(e) votes to classify
unseen examples. The upgrade of DiVS to ILP is done through the use of the
propositionalisation technique in an indeterminate language prior to learning
[40,32]: all matchings between a seed example and the examples to reformulate
are computed and rewritten as attribute-value vectors. To avoid the exponential
space requirement of propositionalisation in an indeterminate hypothesis space,
the authors perform a sampling of k vectors in the matching space (k a user-
supplied parameter). As the propositionalisation technique of STILL randomly
selects matchings and is applied before learning, STILL does not benefit from
the TDD strategy that focuses on lggs between the seed examples and the infor-
mative negative examples. As a consequence, STILL mostly extracts irrelevant
vectors for the discrimination task as only the ones corresponding to nearest-miss
lggs are relevant in the case of the TDD strategy (section 2). Therefore STILL,
being a randomised polynomial-time algorithm, cannot ensure to output a cor-
rect theory with respect to the learning data. However, STILL has been shown
to be successful on the “mutagenesis” dataset (B2 and B3 only, see section 5)
with some parameters inherited from DiVS.

5 Experiments

The TDD strategy implemented in Propal to run the experiments detailed
below is the same as AQ’s presented figure 2. Propal conducts a beam search
in the hypothesis space, guided by the Laplace function4. The default beam
size is fixed to 5. We extended this basic algorithm to handle missing values in
constraint variables (or attributes) with the same technique as AQ’s [23] and
Ripper’s [6]: all tests involving the constraint variable V are defined to fail on
examples for which the value of V is missing.

To solve the WCSPs, Propal’s implementation of nearest-miss extraction
relies on the state-of-the-art complete algorithm Toolbar5 [8]. We have used in
the experiments the default parameters of Toolbar. However, we set the timer of
Toolbar to 60 seconds to keep computation of a nearest-miss within a reasonable
amount of time. This is usually needed for the one or two last seeds of problems
like “mutagenesis”, that can be quite large compared to the other positive ex-
amples. When the time limit is reached, Toolbar returns the best solution (i.e.,
the most specific negative example) found so far. As shown in [3], this approxi-
mation degrades the heuristic search by increasing the branching factor but still
ensures the correctness of the output theory.

We validate our implementation of the TDD strategy in ILP by comparing
Propal’s performances with the ILP systems FOIL, PROGOL, STILL and
4 The Laplace function is defined as p+1

p+n+2 , with p and n the number of positive and
negative examples covered by the hypothesis.

5 http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/ToolBarIntro
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TILDE on the “mutagenesis” datasets [36]. The “mutagenesis” dataset used
is regression-friendly with the 4 versions of background knowledge (from B1 to
B4). We made additional comparisons with the two propositionalisation systems
RSD and RELAGGS, on the “KRK illegal chess position” [25] datasets and
two learning problems extracted from the PKDD99 financial challenge by [20].
The two last problems involve learning to classify bank loans into profitable and
non-profitable loans. For the last three problems, we performed a 10-fold cross-
validation averaged over 10 runs as in [20]. For the “mutagenesis” dataset, we
followed the protocol described in [36].

On the “mutagenesis” datasets, the results for FOIL and PROGOL have been
taken from [36], for TILDE from [4] and for STILL from [33]. On the “KRK
illegal position” and the two tasks from PKDD99, the results are taken from
[20]. When several values of parameters were tried for these systems, we chose
their best results. As noted in [29], this can produce an optimistic bias in favour
of the other algorithms compared to Propal, which is run on all datasets with
a standard size of beam of 5. This is the only parameter of Propal for now as
we recall that no noise-coping strategy has been implemented.

Table 1. Accuracy in % of learnt theories by PROGOL, FOIL, TILDE, STILL, RSD,
RELAGGS and Propal on the “mutagenesis”, “KRK” and “loans” datasets, and time
for Propal to output the theories

B1 B2 B3 B4 KRK.illegal Loan (AvB) Loan (ACvBD)

PROGOL 76 81 83 88 n.a. 45.7 n.a.

FOIL - 75.8 83 86 97.2 - 87.3

TILDE 75 79 85 86 75.1 - n.a.

STILL - 86.5 88.8 - - - -

RELAGGS - - - - 72.3 88 94.1

RSD - - - - 76.2 n.a. n.a.

Propal 85.5 86.7 88.2 85.1 100 84,4 85,19

Time (s.) 3692 60698 40949 8274 179 117 564

Table 1 summarises the results. The symbol “-” indicates that the result is
not available or that the experiments have been done with a different protocol.
The symbol “n.a.” indicates that the learner exhausted the time limit of 2 days
of computation on at least one of the fold as reported in [20].

We can see from table 1 that Propal’s performance is competitive with the
state-of-the-art generate-and-test approaches which use sophisticated heuristic
search and pruning techniques. On B1, which is the hardest domain for learning
in the “mutagenesis” domain, Propal performed as well as the other systems
with B3, which uses expert attributes; the performance on B1, B2 and B3 are
among the best reported. We see a lower performance on the richest domain
B4, where descriptions of higher-level structures that appear in a molecule are
added. This over-fitting may be explained by the large increase in the size of the
hypothesis space, as Propal does not restrict the search space beyond the choice
of a seed example, and the fact that no noise-coping strategies are implemented.
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The “KRK” dataset is a good example where the TDD strategy pays off: the
dataset provides a lot of near-misses (the branching factor being often reduced
to 1) and it can be considered noise-free. The result largely improves those of
the propositionalisation systems and of TILDE.

Another example of a good performance of Propal is on the “Loan” datasets,
which is advocated in [20] as representative of large datasets where current ILP
systems do not perform well: on “loanAvB”, PROGOL has an accuracy below
50% and RSD cannot solve at least one fold after two days of computation;
on “loanACvDB”, they run out of time, as well as TILDE and only FOIL per-
forms well on it. RELAGGS [20] performs best with 88% and 94.1% respectively.
Propal is able to solve the two problems quickly with rather good performance
comparatively.

6 Conclusion

We have studied in this paper the TDD strategy, popularised by the AQ family, in
the context of ILP. We made a link between AQ, Winston’s work on near-misses
and a change of representation of the negative examples through lggs computed
with a seed example. This lgg-based reformulation merges the instance space and
the search space into a simpler learning space, where the learning problem can
be solved algebraically. This formalisation allowed us to propose a simple exten-
sion of the TDD strategy to ILP in languages as expressive as non-recursive Dat-
alog clauses with negation. The TDD strategy offers a theoretical advantage over
generate-and-test systems such as PROGOL, Aleph and MIO, by making it pos-
sible to prune irrelevant branches of the refinement graph by using most relevant
negative examples. The extraction of nearest-miss examples through a lgg-based
reformulation has been formalised as a Weighted CSP, allowing a flexible imple-
mentation of the AQR strategy within Propal using a state-of-the-art WCSP
solver, Toolbar. This implementation, which does not include any noise-handling
mechanism, has been shown to be competitive with generate-and-test FOL learn-
ers and propositionalisation systems. However, it is known that data-driven strate-
gies are more prone to noise issues than their generate-and-test counterparts. We
plan to further validate the approach by studying the impact of noise. In particu-
lar, we plan to investigate the works in this domain proposed for the AQ system
[16] and for rule learning [11]. Secondly, now that the mechanism for extracting
nearest-miss examples has been implemented within Toolbar, we plan study the
impact of various propagation mechanisms and various approximation strategies
on Propal’s running time and performance.
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Abstract. Requirements Engineering involves the elicitation of high-
level stakeholder goals and their refinement into operational system re-
quirements. A key difficulty is that stakeholders typically convey their
goals indirectly through intuitive narrative-style scenarios of desirable
and undesirable system behaviour, whereas goal refinement methods usu-
ally require goals to be expressed declaratively using, for instance, a
temporal logic. Currently, the extraction of formal requirements from
scenario-based descriptions is a tedious and error-prone process that
would benefit from automated tool support. We present an ILP method-
ology for inferring requirements from a set of scenarios and an initial but
incomplete requirements specification. The approach is based on trans-
lating the specification and scenarios into an event-based logic program-
ming formalism and using a non-monotonic ILP system to learn a set
of missing event preconditions. The contribution of this paper is a novel
application of ILP to requirements engineering that also demonstrate the
need for non-monotonic learning.

1 Introduction

Requirements Engineering refers to all aspects of the software development life-
cycle concerned with identifying, analysing and documenting stakeholder re-
quirements [2]. Several approaches have been developed to assist Requirements
Engineers in the refinement of high-level goals into operational requirements
[12,13] declaratively expressed in a temporal logic [16]. The use of a temporal
formalism enables the deployment of automated analysis and refinement tools,
but is not directly accessible to most stakeholders with a less technical back-
ground. In practice, stakeholders prefer to convey their goals through more in-
tuitive narrative-style scenarios of desirable and undesirable system behaviour
[30]. Because scenarios are inherently partial descriptions that leave require-
ments implicitly defined, it is necessary to synthesise a declarative requirements
specification that admits the desired behaviours while rejecting the undesired
ones. Currently, the extraction of declarative requirements from scenario-based
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descriptions is a tedious and error-prone process that relies on the manual efforts
of an experienced engineer and would benefit from automated tool support.

This paper presents an ILP approach for extracting requirements from example
scenarios and a partial requirements specification. Scenarios represent examples
of desirable and undesirable system behaviour over time while the requirements
specification captures our initial but incomplete background knowledge of the en-
visioned system and its environment. The task is to complete the specification by
learning a set of missing requirements that cover all of the desirable scenarios, but
none of the undesirable ones. We show how this task can be naturally represented
as a non-monotonic ILP problem in which the partial requirements specification
provides the background knowledge and the scenarios comprise the positive and
negative examples. In particular, we show how the initial specification and sce-
narios can be translated into an ILP representation based on the Event Calculus
[8,17]. Because this representation makes essential use of negation in formalising
the effects and non-effects of actions, the resulting learning problem is inherently
non-monotonic. We show that, under the stable model [4] semantics for logic pro-
grams with negation, the stable models of the transformed program correspond to
the temporal models of the original specification. We show that stable models of
the program correspond to the temporal models of the original specification. We
then use a non-monotonic ILP system, called XHAIL [24,25], to generalise the sce-
narios with respect to the initial specification. For the purposes of illustration, we
restrict the language bias of XHAIL so as to compute a specific form of missing
requirements, called event preconditions, which state that a certain event may not
happen under some particular conditions.

The paper is organised as follows. Section 2 presents some background ma-
terial on Linear Temporal Logic (LTL) and the Event Calculus (EC). Section 3
describes the main features of our approach. Section 4 provides an illustrative
case study involving a Mine Pump controller. We conclude with a summary and
remarks about related and future work.

2 Background

Several logic-based formalisms have been used for representing requirements
specifications [5,10,27]. Among these, the Event Calculus (EC) [8] is particu-
larly well suited to logic programming approaches like ILP. Moreover, its explicit
representation of time and domain specific axioms makes EC an ideal formal-
ism for representing and reasoning about a wide class of event-driven systems.
Although EC has been successfully used as a “back-end” computational formal-
ism [27] it is not a mainstream representation because it necessitates familiarity
with logic programming. By contrast, Linear Temporal Logic (LTL) [16] is very
widely used by software engineers for specifying system goals and properties. In
this paper we propose a method for translating between LTL and EC descrip-
tions in order to enable the use of ILP techniques in Requirements Engineering.
In the rest of this section we briefly recall the syntax and semantics of these
formalisms.
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2.1 Linear Temporal Logic

The language of LTL includes a set of propositions P , the Boolean connectives
(¬, ∧, ∨ and→) and the temporal operators© (next), � (always), ♦ (eventually),
U (strong until) and W (weak until). Well-formed formulae are constructed in the
standard way. We use (¬) a to refer to either the atom a or the negation ¬ a
of that atom. Also, we use ©i to denote i consecutive applications of the ©
operator. We assume P is partitioned into two sets Pe and Pf denoting event
and fluent propositions, respectively. The truth or falsity of an LTL formulae is
specified relative to a graph-based structure called a Labelled Transition System
(LTS) [15,6].

Definition 1. A labelled transition system (LTS) is a tuple 〈S, E,→, s0〉 where
S is a non-empty set of states, E is a non-empty set of events,→ ⊆ S×E×S is a
labelled transition relation, and s0 is the initial state. A transition (s, e, s′) ∈ →
from a state s to a new state s′ labelled by e is denoted graphically as s

e−→ s′.
A path in an LTS is a sequence of states and transitions, from the initial state,
of the form σ = s0

e1−→ s1, . . . where ei ∈ E is said to be at position i in σ and
si is said to be the ith state in σ.

As formalised in Definition 2 below, an LTL model is a pair 〈T, V 〉 consisting of
an LTS, T , and a valuation function, V , that assigns to each fluent proposition
an arbitrary set of states in paths of T . The events are not specified in V as
their truth is implicitly determined by the transitions in T . This is formalised in
Definition 3, which defines the satisfaction of an LTL formula φ with respect to
a path σ in the LTS T .

Definition 2. Given an LTL language with propositions P = Pe ∪ Pf an LTL
model is a pair 〈T, V 〉 where T is an LTS with events Pe and V is a valuation
function V : Pf ⇒ 2A, where A = {(σ, i) | σ path in T and i position in σ}.

The satisfiability of an LTL formula is defined with respect to positions (or
states) in a given path σ. A formula φ is said to be true at position i in a path
σ, denoted σ, i |= φ iff it is true at the si state in the path σ.

Definition 3. Given an LTL language with propositions P = Pe ∪ Pf , an LTL
model 〈T, V 〉 and a path σ in T , the satisfaction of an LTL formula φ at a
position i ≥ 0 of the path σ is defined inductively as follows:

– σ, 0 �|= e for any event proposition e ∈ Pe

– σ, i |= e iff e is at position i (i ≥ 1) in the path σ, where e ∈ Pe

– σ, i |= f iff (σ, i) ∈ V (f), where f ∈ Pf

– σ, i |= ¬φ iff σ, i �|= φ
– σ, i |= φ ∧ ψ iff σ, i |= φ and σ, i |= ψ
– σ, i |= φ ∨ ψ iff σ, i |= φ or σ, i |= ψ
– σ, i |= ©φ iff σ, i + 1 |= φ
– σ, i |= �φ iff ∀j ≥ i. σ, j |= φ
– σ, i |= ♦φ iff ∃j ≥ i. σ, j |= φ



Extracting Requirements from Scenarios with ILP 67

– σ, i |= φ U ψ iff ∃j ≥ i. σ, j |= ψ and ∀i ≤ k < j. σ, k |= φ
– σ, i |= φ W ψ iff σ, i |= �φ or σ, i |= φ U ψ

An LTL formula φ is said to be satisfied in a path σ if it is satisfied at the initial
position, i.e. σ, 0 |= φ. Similarly, a set of formulae Γ is said to be satisfied in a
path σ if each formula ψ ∈ Γ is satisfied in the path σ.

Definition 4. Let Γ be a set of LTL formulae and φ be an LTL formula. Let
M = 〈T, V 〉 be an LTL model. The formula φ is said to be entailed by Γ under
M , written Γ |=M φ, iff φ is satisfied in each path σ of T that satisfies Γ .

2.2 Event Calculus

The Event Calculus (EC) is a widely-used logic programming formalism for
reasoning about actions and time [29]. The standard definition of an EC language
includes three sorts of terms: event terms, fluent terms, and time terms. The
latter are represented by the non-negative integers 0, 1, 2, . . ., while the events
and fluents are chosen according to the domain being modelled. In this paper, we
assume an additional sort representing scenarios. The EC ontology includes the
basic predicates happens, initiates, terminates and holdsAt. The atomic formula
happens(e, t, s) indicates that event e occurs at time-point t in a given scenario
s, while initiates(e, f, t, s) (resp. terminates(a, f, t, s)) means that, in a given
scenario s, if event e were to occur at time t, it would cause fluent f to be true
(resp. false) immediately afterwards. The predicate holdsAt(f, t, s) indicates that
fluent f is true at time-point t in a given scenario s. The formalism also includes
an auxiliary predicate clipped(t1, f, t2, s) which means that, in a given scenario s,
an event occurs which terminates f between times t1 and t2. Events correspond
to actions which can be performed, while fluents correspond to time-varying
Boolean properties. The interactions between the EC predicates are governed
by a set of domain-independent core axioms shown below1.

clipped(T1, F, T2, S)←happens(E, T, S),
terminates(E, F, T, S), T1 ≤ T < T2.

(1)

holdsAt(F, T2, S)←happens(E, T1, S), initiates(E, F, T1, S),
T1 < T2,not clipped(T1, F, T2, S). (2)

holdsAt(F, T, S)← initially(F, S), not clipped(0, F, T, S). (3)

happens(E, T, S)←attempt(E, T, S),not impossible(E, T, S). (4)

These axioms formalise the commonsense law of inertia which states that, in
any scenario S, a fluent that has been initiated by an event occurrence continues
1 The EC axioms used here are identical to those in [17] apart from the extra argu-

ment S for representing scenarios and the predicate impossible for capturing pre-
conditions.
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to hold until a terminating event occurs and vice versa. To allow the representa-
tion of preconditions, we say that an event E happens at a time point T if it is
attempted and is not impossible2. Information about which events affect which
fluents is provided by domain-dependent axioms for the predicates initiates and
terminates, together with information about which fluents are initially true and
which events are attempted in given system behaviours.

EC theories are normal logic programs - i.e. a set of clauses of the form
A← B1, . . . , Bn, not C1, . . . , not Cm where A is the head atom, Bi are posi-
tive body literals, and not Cj are negative body literals. Their semantics is given
by the standard stable model semantics [4]. In general, a model I of a program Π
is a set of ground atoms such that, for each ground instance G of a clause in Π ,
I satisfies the head of G whenever it satisfies the body. A model I is minimal
if it does not strictly include any other model. Definite programs (i.e. programs
with no negative body literals) always have a unique minimal model. Normal
programs may have instead one, none, or several minimal models. It is usual to
identify a certain subset of these models, called stable models, as the possible
meanings of the program. Given a normal program Π , the definite program ΠI

is the program obtained from the ground instances of Π by removing all clauses
with a negative literal that is not satisfied in Π and removing negative literals
from the remaining clauses. Clearly ΠI is a definite logic program and as such
has a unique minimal (Herbrand) model MΠI . A model I of a program Π is
stable if it is equal to MΠI .

Definition 5. A model I of Π is a stable model if I = MΠI where ΠI is the
definite program ΠI = {A← B1, . . . , Bn | A← B1, . . . , Bn, not C1, . . . , not Cm

is the ground instance of a clause in Π and I does not satisfy any of the Cj}.

3 The Approach

In this section we show how ILP can be used to extend an incomplete require-
ments specification using information from given scenarios. We formalise the
learning problem in terms of LTL specifications and scenarios, and show how
these can be soundly translated into a non-monotonic ILP problem using an EC
formalisation to extend the specification in order to cover the given scenarios.

3.1 Problem Description

Our aim is to develop an approach for extending an incomplete requirements
specification with a particular type of requirement called event preconditions
by using information inferred from desirable and undesirable user scenarios. In
order to formalise this task we need to state precisely what we mean by a re-
quirements specification and by a desirable or undesirable scenario and we need

2 Alternative formalisations of event preconditions have been proposed in EC [17]. The
one adopted here captures the intuition that impossible(E, T, S) means the event E
could not actually occur at time point T .
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to define what it means for a specification to cover a set of such scenarios. To
do this, we assume an LTL language with fluents Pf and events Pe in which
each fluent f ∈ Pf is associated with two disjoint sets If and Tf of initiating
and terminating events e ∈ Pe. For convenience we use the notation Ef

I to rep-
resent the disjunction

∨
e∈If

e of f -initiating events, and Ef
T for the disjunction

∨
e∈Tf

e of f -terminating events. We also use the notation S0 to represent the
set of fluents f ∈ Pf that are true in the initial system state s0. We now define
requirements specifications and scenarios as LTL theories containing formulae of
the forms defined below.

As formalised in Definition 6, a requirements specification consists of a set
of initial state axioms (5,6) stating which fluents are initially true and false;
persistence axioms (7,8) formalising the commonsense law of inertia that any
fluent will remain true (resp. false) until a terminating (resp. initiating) event
occurs that causes it to flip state; change axioms (9,10), stating that, for any
fluent f ∈ Pf , the occurrence of any initiating (resp. terminating) event will
cause f to become true (resp. false); and a set of event precondition axioms (11)
which disallow any models that include transitions of the form sk

e−→ sk+1 for
any state sk that satisfies a certain conjunction of fluent literals

∧
0≤i≤n(¬)fi.

Definition 6. A requirements specification is an LTL theory consisting of

– two initial state axioms ∧
fi∈S0

fi (5)
∧

fj∈Pf−S0
¬fj (6)

– two persistence axioms for each fluent f ∈ Pf

�(f → f W Ef
T ) (7)

�(¬f → ¬f W Ef
I ) (8)

– two change axioms for each fluent f ∈ Pf

�(Ef
I → f) (9)

�(Ef
T → ¬f) (10)

– a set of event precondition axioms of the form

�(
∧

0≤i≤n(¬)fi →©¬e) (11)

As formalised below, a scenario is a formula stating a sequence of occurrences
of events 〈e1, . . . , em〉.

Definition 7. A scenario is an LTL formula of the form
∧

1≤i≤m©iei (12)
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Note that the definition above assumes one event to be true per point position.
A desirable scenario is a scenario that may occur while an undesirable scenario
is a sequence of events that should never occur.

Using Definition 7, we can now formalise our learning task. Given an initial
specification Spec together with a set of undesirable scenarios Und and desirable
scenarios Des, our aim is to learn a set of event precondition axioms Pre that,
when added to Spec, entails the negation of each undesirable scenario and is
consistent with each desirable scenario. As formalised in Definition 8, the first
condition states that, in any model of Spec ∪ Pre, there is no path which
produces any undesirable scenario in Und, while the second condition states
that, in any model of Spec ∪ Pre, there is always a path corresponding to each
desirable scenario in Des. Any set of event precondition axioms that satisfy these
two properties is said be a correct extension of a requirements specification with
respect to the given scenarios.

Definition 8. Let Spec be a requirements specification, Des be a set of desirable
scenarios, and Und be a set of undesirable scenarios. A set Pre of event precon-
dition axioms is a correct extension of Spec with respect to Des and Und iff

• Spec ∪ Pre |=M ¬Pu, for each undesirable scenario Pu ∈ Und
• Spec ∪ Pre �|=M ¬Pd, for each desirable scenario Pd ∈ Des

3.2 Translating LTL into EC

To apply ILP to the task of learning correct extensions, a methodology is now
defined for translating LTL specifications and scenarios of the form defined above
into EC normal logic programs. The EC language is obtained very simply from
the LTL formulae: one fluent (resp. event) term is introduced to represent each
fluent f (resp. event e) in Pf (resp. Pe); time points are represented by the non-
negative integers 0, 1, 2, . . .; one scenario term is introduced to represent each
desirable (resp. undesirable) scenario Pd ∈ Des (resp. Pu ∈ Und). Relative to
this language, the EC translation of a requirements specification is defined as
follows.

Definition 9. Let Spec be a requirements specification. The EC translation
τ(Spec) of Spec is the EC program Π constructed as follows:

– add to Π one fact initially(fi, S) for each fluent fi in an initial state axiom
of the form

∧
fi∈S0

fi.

– add to Π one fact initiates(e, f, T, S) for each f -initiating event e ∈ Ef
I in

a change axiom of the form �(Ef
I → f).

– add to Π one fact terminates(e, f, T, S) for each f -terminating event e ∈ Ef
T

in a change axiom of the form �(Ef
T → ¬f).
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– add to Π one rule impossible(e, T, S) ←
∧

0≤i≤k(not)holdsAt(fi, T, S) for
each event precondition axiom of the form �(

∧
0≤i≤k(¬)fi →©¬e).

Note that the negative initial state axiom (6) and the persistence axioms (7)
and (8) are all implicitly captured by stable model interpretation of the EC core
axioms (which are incorporated into the translation of scenarios in Definition
10 below). Note also that the effect of the temporal operator � is captured by
implicit universal quantification on the time variable T appearing in the initiates
and terminates facts. As shown in Theorem 1, the translation τ is sound in the
sense that for any path σ in any model of Spec there is a corresponding narrative
of events Nar such that the program Π = τ(Spec) ∪ Nar has a stable model
that satisfies the same fluent and event formulae as σ.

Theorem 1. Let Spec be a requirements specification with LTL model 〈T, V 〉
such that any path in T satisfies Spec at position 0. Let σ be a path in T of
the form s0

e1−→ s1, . . . , sn−1
en−→ sn, and let Nar be the set of facts of the

form attempt(ei, i− 1, σ) for each event ei in σ. Let Π be the EC logic program
Π = τ(Spec) ∪ Nar with stable model I. Then, for any fluent f and position
i, we have σ, i |= f iff holdsAt(f, i, σ) is true in I; and, for any event e and
position i, we have σ, i |= e iff happens(e, i− 1, σ) is true in I.

The function τ translates an LTL requirements specification into an ILP theory.
It now remains to specify a corresponding translation from scenarios to ILP
examples. As formalised in Definition 10 below, scenarios contribute facts to the
background theory as well as to the examples. Specifically, each scenario produces
a set of example literals of the form (not)happens(e, t, s) and a set of background
facts of the form attempt(e, t, s). The translation of the undesirable scenarios
depends on the event for which the precondition axiom is to be learned. In what
follows, it is assumed that preconditions are to be learned for the last event
of each undesirable scenario. Consequently, each undesirable scenario produces
a sequence of facts stating that certain events do happen followed by one fact
stating that some particular event does not happen immediately afterward. Each
desirable scenario simply states that a certain sequence of events does happen.

Definition 10. Let Spec be a requirements specification, and Des and Und
be sets of desirable and undesirable scenarios respectively. The EC translation
τ(Spec, Des, Und) is the pair (B, E) of EC programs constructed as follows:

– for each undesirable scenario Pu =
∧

1≤i≤n©iei in Und
• add to E n− 1 facts happens(ei, i− 1, u) with 1 ≤ i < n
• add to E 1 fact not happens(en, n− 1, u)
• add to B n facts attempts(ei, i− 1, u) with 1 ≤ i ≤ n

– for each desirable scenario Pd =
∧

1≤i≤m©iei in Des
• add to E m facts happens(ei, i− 1, d) with 1 ≤ i ≤ m
• add to B m facts attempts(ei, i− 1, u) with 1 ≤ i ≤ m

– add to B all of the facts and rules in τ(Spec)
– add to B the 4 EC core axioms (1)-(4).
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3.3 Computation of Event Precondition Axioms Using XHAIL

Given an initial specification Spec and sets of desirable and undesirable scenarios
Des and Und, the translation τ defined above can be used to generate a normal
ILP theory B and examples E (such that τ(Spec, Des, Und) = (B, E)). For any
set Pre of event precondition axioms, τ can also be used to generate a set H of
normal clauses of the form (13) below (such that τ(Pre) = H).

impossible(e, T, S)←
∧

0≤j≤n

(not) holdsAt(fj , T, S) (13)

Moreover, it follows from Theorem 1 that Pre is a correct extension of Spec with
respect to Des and Und iff B∪H |= E under the stable model view of |=. Hence,
the task of computing correct extensions can be reduced to a non-monotonic ILP
problem in the sense of [28] where the hypothesis space is the set of all clauses
of the form (13) above.

The computation of such preconditions is performed by the non-monotonic
ILP system XHAIL [25], which uses an abductive engine to implement a three-
phase Hybrid Abductive Inductive Learning (HAIL) approach [24]. This ap-
proach is based on constructing and generalising a preliminary ground hypothe-
sis K, called a Kernel Set of B and E, which can be regarded as a non-monotonic
multi-clause generalisation of the well-known Bottom Set concept used in sev-
eral Progol-based ILP systems [20]. As in these monotonic ILP systems, the
construction of the Kernel Set is heavily guided by language and search bias,
and its main purpose is to bound the ILP hypothesis space.

The XHAIL language and search bias mechanisms are based upon the tried-
and-tested notions of mode declarations and compression as used for example
in Progol [20]. Intuitively, the compression heuristic favours the inference of
theories containing the fewest number of literals and is motivated by the scientific
principle of Ocam’s razer (which roughly speaking, means choose the simplest
hypothesis that fits the data). Mode declarations on the other hand provide a
convenient mechanism for specifying which predicates may appear in the heads
and bodies of hypothesis clauses and for controlling the placement and linking
of constants and variables within those clauses [20].

As formalised in [20] mode declarations are of two types head and body dec-
larations. To learn formulae of the form (13) above, one head mode declaration
is needed modeh(∗, impossible(#event, +time, +scenario)) to allow atoms of
the form impossible(e,T,S) to appear in the heads of H . Two body mode dec-
larations are also needed, modeb(∗, holdsAt(#fluent, +time, +scenario)) and
modeb(∗, not holdsAt(#fluent, +time, +scenario)), to allow literals of the form
holdsAt(f, T, S) and not holdsAt(f, T, S) to appear in the bodies of H . The sym-
bols #, +,− are called placemarkers and are replaced by constants, input and
output variables, respectively.

As explained in [25], the hypothesis H is computed in three stages: first the
head atoms Δ of the Kernel Set K are obtained abductively, then the body
literals of K are obtained by deduction, and finally K is inductively generalised
to give H . To exploit a close correspondence between negation and abduction,
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XHAIL performs all three phases by translating them into an Abductive Logic
Programming (ALP) [7] formalism and using an efficient extension [26] of the
Kakas-Mancarella proof procedure [7] to solve each subproblem in turn.

The first phase of the XHAIL proof procedure returns a minimal set of ground
atoms Δ that entail all of the examples E when added to the theory B. This
done by simply querying the examples E against the theory B. The abducible
atoms are defined as the well-typed ground instances of any head declarations.
To avoid any unsoundness caused by the non-monotonicity of the EC axioms,
an incremental cover set approach is not used; instead XHAIL generalises all of
the examples at once.

The second phase of the procedure computes a ground Kernel Set K of B
and E by making each abduced atom α ∈ Δ into the head of a clause and
saturating it with a set of ground body literals entailed by B. This is done
using a non-monotonic generalisation of the Progol saturation procedure [20]. In
order to compute the deductive consequences of B, XHAIL employs the Eshgi-
Kowalski transformation for implementing negation through abduction [3]. In
effect, negative literals not(a) are treated as positive abducibles a∗ subject to
the implicit integrity constraints a → ¬a∗ and a∗ → ¬a.

The third phase, returns a hypothesis H that subsumes K and entails E with
respect to B. Two transforms prepare the ALP system for this task. First, all
input and output terms in K are replaced by variables. Then, each body literal λj

i

at position i in the j-th clause of K is replaced by the atom try(i, j, [X1, . . . , Xk]),
where X1, . . . , Xk are the variables added to that clause, and the two clauses
try(i, j, [X1, . . . , Xk]) ← not(use(i, j)) and try(i, j, [X1, . . . , Xk]) ← use(i, j), λj

i

are added to K. Applying an ALP procedure to the resulting theory B∪K with
goal E and abducible use/2 gives a set of atoms S =

∧
use(i, j) indicating which

literals λj
i should be kept in H .

Soundness of XHAIL with respect to the stable model semantics follows from
the soundness of the Kakas-Mancarella ALP procedure and the fact that H
is equivalent to the theory K ∪ S computed in the inductive phase of the
XHAIL procedure and which, by definition, entails the examples. Strictly speak-
ing, XHAIL implements the partial stable model semantics, but since the EC
programs generated by τ are categorical in the sense of [28], the two semantics
coincide in this particular application. As illustrated by the case study in the
next section, XHAIL can therefore be used to compute correct extensions of a
partial specification and scenarios via the translation function τ .

4 Case Study: A Mine Pump Control System

This section shows an application of the learning approach proposed in this
paper on a real event-driven system, namely the Mine Pump Control System
fully described in [9]. This is a system that is supposed to monitor and control
water levels in a mine, so to avoid the risk of flood. It is composed of a pump
for pumping mine-water up to the surface. The pump works automatically, con-
trolled by water-level sensors: detection of a high-level water causes the pump
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to run until low-level is indicated. For safety reasons, the pump must not run if
the percentage of methane in the mine exceeds a certain critical limit.

An initial partial requirement specification Spec is given, written in an LTL
language with fluent propositions Pf = {pumpOn, criticalMethane, highWater}
and event propositions Pe ={turnPumpOn, turnPumpOff, signalCriticalMethane,
signalNotCriticalMethane, signalHighWater, signalNotHighWater}. The specifi-
cations includes information about the initial state of the system, persistence
axioms, and change axioms formalised as follows:

(¬criticalMethane ∧ ¬pumpOn ∧ ¬highWater) (14)

�(criticalMethane → (criticalMethane W signalNotCriticalMethane)) (15)

�(¬criticalMethane → (¬criticalMethane W signalCriticalMethane )) (16)

�(pumpOn→ (pumpOn W turnPumpOff)) (17)

�(¬pumpOn→ (¬pumpOn W turnPumpOn)) (18)

�(highWater → (highWater W signalNotHighWater)) (19)

�(¬highWater → (¬highWater W signalHighWater)) (20)

�(signalCriticalMethane → criticalMethane) (21)

�(signalNotCriticalMethane → ¬criticalMethane) (22)

�(signalHighWater → highWater) (23)

�(signalNotHighWater → ¬highWater ) (24)

�(turnPumpOn→ pumpOn) (25)

�(turnPumpOff→ ¬pumpOn) (26)

Equation (14) defines the initial state of the system, equations (15)–(20) spec-
ify the persistence axioms, and equations (21)–(26) define the change axioms.
Together with the informal description the case study includes undesirable and
desirable scenarios which have been formalised as follows:

Pu = (©signalCriticalMethane ∧©2signalNotCriticalMethane∧
©3 signalCriticalMethane ∧©4turnPumpOn) (27)

Pd1 = ( ©signalCriticalMethane ∧©2signalHighWater ∧
©3 signalNotCriticalMethane ∧©4turnPumpOn ∧
©5 signalCriticalMethane ∧©6turnPumpOff)

(28)

Pd2 = (©signalHighWater ∧©2turnPumpOn ∧
©3 signalNotHighWater ∧©4turnPumpOff ∧
©5 signalHighWater ∧©6turnPumpOn)

(29)

Applying the translation τ to the specification and scenarios above results in an
ILP theory B composed of the EC core axioms and the following clauses:
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initiates(signalCriticalMethane,criticalMethane,T,S).
terminates(signalNotCriticalMethane,criticalMethane,T,S).
initiates(signalHighWater,highWater,T,S).
terminates(signalNotHighWater,highWater,T,S).
initiates(turnPumpOn,pumpOn,T,S).
terminates(turnPumpOff,pumpOn,T,S).

attempt(signalCriticalMethane,0,u).
attempt(signalNotCriticalMethane,1,u).
attempt(signalCriticalMethane,2,u).
attempt(turnPumpOn,3,u).

attempt(signalHighWater,0,dp1).
attempt(turnPumpOn,1,dp1).
attempt(signalNotHighWater,2,dp1).
attempt(turnPumpOff,3,dp1).

attempt(signalCriticalMethane,0,dp2).
attempt(signalHighWater,1,dp2).
attempt(signalNotCriticalMethane,2,dp2).
attempt(turnPumpOn,3,dp2).
attempt(signalCriticalMethane,4,dp2).
attempt(turnPumpOff,5,dp2).

In addition, the translation produces the following set of ILP examples E:

happens(signalCriticalMethane,0,u).
happens(signalNotCriticalMethane,1,u).
happens(signalCriticalMethane,2,u).
not happens(turnPumpOn,3,u).

happens(signalHighWater,0,dp1).
happens(turnPumpOn,1,dp1).
happens(signalNotHighWater,2,dp1).
happens(turnPumpOff,3,dp1).

happens(signalCriticalMethane,0,dp2).
happens(signalHighWater,1,dp2).
happens(signalNotCriticalMethane,2,dp2).
happens(turnPumpOn,3,dp2).
happens(signalCriticalMethane,4,dp2).
happens(turnPumpOff,5,dp2).

Applying XHAIL to B and E yields a single abductive explanation

Δ = {impossible(turnPumpOn, 3, u)} (30)
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This results in a single Kernel Set containing one clause

K = {impossible(turnPumpOn,3,u) ← holdsAt(criticalMethane, 3, u),
not holdsAt(pumpOn, 3, u), not holdsAt(highWater, 3, u)}

(31)
which gives two maximally compressive inductive generalisations

H1 = {impossible(turnPumpOn, T, S) ← holdsAt(criticalMethane, T, S)} (32)

H2 = {impossible(turnPumpOn, T, S) ← not holdsAt(highWater,T, S)} (33)

that correspond to the two correct LTL event precondition axioms

Pre1 = �(criticalMethane →©¬turnPumpOn) (34)

Pre2 = �(¬highWater →©¬turnPumpOn) (35)

5 Conclusion, Related and Future Work

This paper describes a methodology for using ILP to extend a partial require-
ments specification with event preconditions extracted from user scenarios. The
proposed approach works in two stages whereby the initial specification and sce-
narios are first translated from an LTL model into an EC representation so that
a nonmonotonic ILP system can then be used to learn the missing requirements.
By exploiting the semantic relationship between the LTL and EC, we thereby
provide a sound ILP computational “back-end” to a temporal formalism familiar
to Requirements Engineers.

Our approach is closely related to that of [11], where an inductive method
is proposed for inferring high-level goal assertion from positive and negative
scenarios provided by stakeholders. Scenarios are incrementally generalised by
(a) conjoining new assertions with those obtained from previous scenarios and (b)
merging assertions through pattern matching on common antecedent prefixes.
Compared to [11], our ILP-based approach has the advantage of incorporating
background knowledge into the learning process and producing more compact
and comprehensible hypotheses. Moreover, by making happens abducible, our
approach can be applied to scenarios missing events while [11] cannot.

The method proposed in this paper builds upon earlier work in [19] and [18]
in which the ILP systems Progol5 and Alecto were applied to the learning of
domain specific EC axioms. Like XHAIL, these procedures employ an abductive
reasoning module to enable the learning of predicates distinct from those in the
examples — an ability that is clearly required in this application. However, unlike
XHAIL, they do not have a well-defined semantics for non-definite programs and
their handling of negation is rather limited [25]. In fact, the inability of Progol5
and Alecto to reason abductively through nested negations means that neither
of these systems can solve the case study presented in this paper.

Some related approaches for inferring action theories from examples are
presented in [14], [21] and more recently in [23], which reduce learning in the
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Situation Calculus to a monotonic ILP framework. These approaches work by
pre- and post- processing the inputs and outputs of a conventional Horn Clause
ILP system. This technique is very efficient, but is not as general as our own
approach. An alternative method for nonmonotonic ILP under the stable model
semantics is proposed in [28], but cannot be used in our case study because it
assumes the target predicate is the same as the examples. [28] also includes a
thorough review of previous work on nonmonotonic ILP. A more recent tech-
nique is proposed in [22] that uses a combination of SAT solvers and Horn ILP
to perform induction under the stable model semantics.

Although the approach presented in this paper has been tailored for the learn-
ing of event preconditions, it can also learn other types of requirements such
as triggers and post-conditions of the form �(

∧
0≤i≤k fi → ©e) and �(e →∧

0≤j≤h fj) respectively. In principle, this can be achieved by changing the lan-
guage bias appropriately; but it remains to test the efficiency of the approach
when learning more general forms of requirements and when processing larger
case studies. In this paper we also assumed that scenarios are provided by stake-
holders. However, scenarios could also be automatically generated from desirable
system properties via model-checking [1]. We therefore intend to investigate the
integration of ILP and model checking techniques in order to find new ways of
increasing the flexibility and efficiency of the approach.
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Abstract. Information in text form remains a greatly unexploited
source of biological information. Information Extraction (IE) techniques
are necessary to map this information into structured representations
that allow facts relating domain-relevant entities to be automatically
recognized. In biomedical IE tasks, extracting patterns that model im-
plicit relations among entities is particularly important since biological
systems intrinsically involve interactions among several entities. In this
paper, we resort to an Inductive Logic Programming (ILP) approach for
the discovery of mutual recursive patterns from text. Mutual recursion
allows dependencies among entities to be explored in data and extraction
models to be applied in a context-sensitive mode. In particular, IE mod-
els are discovered in form of classification rules encoding the conditions
to fill a pre-defined information template. An application to a real-world
dataset composed by publications selected to support biologists in the
task of automatic annotation of a genomic database is reported.

1 Introduction

The last decade has witnessed an unexampled expansion of biomedical data and
related literature. Advances of genome sequencing techniques have led to an
overwhelming increase in the number of publications about discovered genes,
proteins and their roles in biological processes. The ability to survey this lit-
erature and extract relevant pieces of information is crucial for researchers in
biomedicine. However, finding explicit entities (e.g., a protein or a kinase) and
facts (e.g., phosphorylation and interaction relationships) in unstructured text is
a time consuming and boring task because of the size of available resources, data
sparseness and continuous updating of published material. Information Extrac-
tion (IE) is the process of mapping unstructured text into structured form, such
as knowledge bases or databases, by filling predefined templates of information
describing objects of interest and facts about them. This motivates the interest
of IE and text mining practitioners toward the biomedical field [24,15].

In a machine learning perspective, IE can be tackled as a classification task,
where classification models composed by rules or patterns encoding the condi-
tions to fill a given slot of a template of interest are learned from a set of an-
notated texts (i.e., examples of filled templates) [21]. Natural language research
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has widely made use of statistical techniques (e.g., hidden Markov models and
probabilistic context-free grammars) because of their robustness and wide cover-
age peculiarities. However, these techniques cannot properly cope with the level
of semantic interpretation. Moreover, they discover linguistically impoverished
models which are difficult to interpret and extend [20]. To solve these problems,
logic-based approaches, such as those developed in ILP, can be employed. In-
deed, they make encoding easy for natural language statements reported both
in training data and in the background knowledge [10], and they learn logical
theories that can be easily interpreted and revised [10]. Moreover, IE tasks can
be naturally framed in the ILP relational setting where data have a relational
structure and examples can be related to each other.

Several papers on ILP approaches to learning rule-based models from logical
representations of texts are reported in the literature [1,11,16,13,4]. However,
only some of them face problems of IE from biomedical texts [5,14], despite the
fact that biomedical IE is considered a major application area where ILP may
converge [7]. Difficulties are due to the complexity of the biomedical language
which is characterized by inconsistent naming conventions, i.e. ambiguities oc-
curring when the same term denotes more than one semantic class (e.g., p53 is
used to specify both a gene and a protein) or when many terms lead to the same
semantic class (abbreviations, acronym variations). Further problems derive from
the continuous creation of new biological terms or evolutions of the same bio-
logical object (e.g., genes are renamed once their function is known). The use of
non standard grammatical structures as well as domain-specific jargon represent
another source of complexity. All these issues make the preparation of training
data really difficult. On the other hand, a number of controlled vocabularies,
lexicons and ontologies which can be exploited both in the data processing and
reasoning steps are available. This further motivates an ILP approach which can
naturally handle such a background knowledge.

In the IE literature, there are two main tasks, namely named entity recogni-
tion and multi-slot extraction (or template filling). The former aims to iden-
tify peculiar objects of interest (the named entities), such as the pathology
associated to a mutation or the substitution that causes a mutation. The lat-
ter looks for conceptual relationships between named entities, such as the ge-
netic mutation associated to both a pathology and a substitution (template
mutation(〈pathology〉, 〈substitution〉)).

A multi-slot extraction task, which is generally based on the results of a named
entity recognition task, can be simplified if tagging of named entities is, in its
turn, performed by considering some conceptual dependencies implicitly defined
at either the syntactic or structural level (e.g., the type of mutation is normally
reported after the corresponding substitution). These conceptual dependencies
are particularly evident in biomedical domain, since biological systems intrinsi-
cally involve relations among several entities (e.g., genes and proteins interacting
in regulation networks). Therefore, in this paper, we propose to learn tagging
models in the form of recursive logical theories which can naturally represent
conceptual dependencies between named entities.
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The paper is organized as follows. In the following section, we describe the
biomedical information extraction problem employed as case study in this work,
namely the annotation of a genomic database. Both the data preprocessing tech-
niques and the representation employed for training examples and background
knowledge are reported in Section 3. In Section 4, the ILP learning algorithm
used to learn recursive logical theories is briefly described. Results obtained on
a real-world dataset composed by publications concerning studies on mitochon-
drial pathologies are reported in Section 5. Finally, some conclusions are drawn
in Section 6.

2 The Information Extraction Problem

The application we are addressing concerns the annotation of some resources
stored in HmtDB1, a database of variability and clinical data associated to mi-
tochondrial pathological phenotypes [2]. Currently, HmtDB stores data from
healthy subjects while variability and clinical data are manually extracted from
published literature. A peculiarity of this fragment of the scientific literature is
that biomedical documents are organized according to a regular section struc-
ture (composed by Abstract, Introduction, Methods, Results and Discussion)
and that often biologists already know which part of the documents may contain
a certain kind of information. This suggests to conduct the IE process in a local
way to pre-categorized sections of interest [3]. Indeed, selecting relevant portions
of text is a prerequisite step for IE, since the lack of robustness and data sparse-
ness makes IE methods inapplicable to large corpora and irrelevant documents.
In this application, selected publications concern mitochondrial mutations and
biologists are interested in automating the identification of occurrences of spe-
cific biological objects (i.e., mitochondrial mutations) and their features (i.e.,
type, position, involved nucleotides, expressing locus, related pathology) as well
as the particular method and experimental setting (i.e., dimension, age, sex,
nationality of the sample) reported in the publication.

Let us consider the following example of a text fragment of the collection:

Cytoplasts from two unrelated patients with MELAS (mitochondrial
myopathy, encephalopathy, lactic acidosis, and strokelike episodes)
harboring an A-*G transition at nucleotide position 3243 in the
tRNALeU(UUR) gene of the mitochondrial genome were fused with human
cells lacking endogenous mitochondrial DNA (mtDNA)

Here MELAS is an instance of the pathology associated to the mutation un-
der study, A-*G is an instance of the substitution that causes the mutation,
transition is the type of the mutation, 3243 is the position in the DNA where
the mutation occurs, and tRNALeU(UUR) is the locus associated to the mutation.

Two examples of clauses used for the annotation of the named entities type
and substitution are the following:

1 http://www.hmtdb.uniba.it/
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substitution(X)← follows(Y,X), type(Y).
type(X) ← distance(X,Y,3), position(Y),

word between(X,Y,‘‘nucleotide position’’).

Their interpretation is straightforward. The first clause states that a token X
is labeled as substitution (i.e., which nucleotide is substituted by which other, A
in G in the example text) if it is followed by a token Y which has been labeled
as mutation type (transition). The second clause states that X is labeled as
mutation type (transition) if it is three words far from a token Y that has
been labeled as mutation position (3243) and there is an intermediate word
nucleotide position.

It should be noted that in the above example, the first clause expresses a
dependency between the annotation classes type and substitution of the same
template of interest (mutation). As previously clarified, learning classification
models which express these dependencies might lead to more accurate mod-
els, which reflect some co-occurrence of named entities in the text. Furthermore,
when automated annotation is performed, context-sensitive recognition of named
entities is possible thanks to learned models which reflect dependencies among
annotation classes. However, discovering such concept dependencies poses ad-
ditional problems for inductive learning. A brief description of an ILP learning
algorithm that provides a solution to these problems is reported in Section 4.

3 Data Preparation

The dataset is composed by a set of manually annotated pre-categorized texts.
Annotated texts are preprocessed by means of natural language facilities pro-
vided in the GATE (General Architecture for Text Engineering) system [6]. We
exploit the ANNIE (A Nearly-New IE system) component which contains finite-
state algorithms and the JAPE (a Java Annotation Patterns Engine) language
which is also a finite-state transduction engine to recognize regular expressions.
By means of ANNIE we perform tokenization, sentence splitting, part-of-speech
tagging, general purpose named-entity recognition (e.g., persons, locations, or-
ganizations), and mapping into dictionaries.

We use both predefined dictionaries available with ANNIE (e.g., organization
names, job title, geographical locations, dates, etc.) and domain-specific dictio-
naries that categorize biological entities such as diseases, enzymes, genes, and
so on. General domain dictionaries are used to disambiguate some terms (e.g.,
places and geographical locations are useful to recognize terms about the ethnic
origin of the diseased sample). Domain-specific dictionaries are flat dictionaries
of canonical forms and variants of names that are peculiar of mitochondrial ge-
netics. They include lists of names about diseases, genes, methods of analysis,
nucleic acids, enzymes, and so on. They are exploited to reduce heterogeneity of
data and to perform syntactic and semantic normalization such as a rough res-
olution of acronyms which in this domain are one of the sources of redundancy
and ambiguity. For instance, recognizing that “myopathy, encephalopathy, lac-
tic acidosis, and stroke-like episodes” and “mitochondrial encephalomyopathy
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lactic acidosis and strokelike episodes” are two variants of the same mitochon-
drial disease widely known by its acronym “MELAS” is possible when a disease
dictionary is used.

JAPE grammars have been defined to identify appositions occurring in texts
as well as some numeric and alphanumeric strings which are frequent in this
domain. Finally, stopwords (e.g., articles, adverbs, and prepositions) are removed
and stemming is performed by means of Porter’s algorithm for English texts [22].

3.1 Data Representation

In this work the analysis units are sentences, which are, in their turn, composed
of tokens. Each sentence or token is given a unique identifier (in the context of
an abstract) based on its ordering within the given text. The relational repre-
sentation of a sentence is described in terms of properties of occurring tokens
and relations between them.

Properties, which are represented by unary descriptors, express statistical (e.g.,
token frequency), lexical (e.g., alphanumeric, capitalized token), structural (e.g.,
structureof complex tokens suchasalphanumeric strings,abbreviations,acronyms,
hyphenated tokens), syntactical (e.g., singular/plural proper/ not proper nouns,
base/conjugated verbs) and domain-specific knowledge (e.g., an entity belonging
to a dictionary). More precisely, the predicate class specifies the category of the
described text (i.e., abstract, methods, results, etc.) and expresses information on
the localization of annotations in documents. The predicate word to stringmaps
an identifier to the corresponding stemmed token, word frequency expresses the
relative frequency of a token in the given text, type of refers to morphological fea-
tures and takes values in the set {allcaps, mixedcaps, upperinitial, numeric,
percentage, alphanumeric, real number}. Parts-of-speech are encoded by the
predicate type pos, while semantics is added by the word category predicate.

Relations express structural properties such as the composition of sentences in
passages of text and tokens in chunks or directly in sentences. Indeed, the follow-
ing binary descriptors have been defined: part of, which list tokens composing
a sentence, and follows, which relates a token to its direct successor. Complex
tokens (e.g., A-*G) are described by several predicates: the s part of relation
on component tokens, the first and last predicates which define the first and
second part of an hyphenated token respectively, the length predicate defin-
ing the length of component tokens, and some predicates (e.g., middle is char,
first is numeric) defining the morphological nature of an alphanumeric string.
Another form of relational knowledge concerns domain dictionaries and ex-
presses the distance between two categorized tokens in the context of a sentence
(distance word category).

In this work, we focus on the template mutation, which is composed of the
following slots: position (i.e., position in the DNA where the mutation occurs),
type (i.e., type of the mutation: insertion, deletion, translation, substitution,
etc.), type position (i.e., pieces of the DNA involved in the mutation and relative
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position in the DNA), locus (gene involved in the mutation), and substitution
(i.e., type of substitution: which nucleotide is substituted by which other).

For the training data, only sentences containing at least a positive example of
position, type, type position, locus and substitution are considered. Henceforth,
they are called target sentences. No relation between target sentences is currently
considered, that is, the extraction of named entities remains local to sentences.
An example of relational description generated for the target sentence reported
in Section 2 is the following:2

annotation(3)=no tag, ... annotation(7)=pathology,

annotation(8)=no tag, ... annotation(13)=substitution,

annotation(14)=type, annotation(15)=no tag, ...,

annotation(17)=position, annotation(18)=locus, ...,

annotation(30)=no tag ←
class(2)=abstract, part of(2,3)=true, ..., part of(2,30)=true,

word to string(3)=cytoplast, ..., word to string(13)=a-*g,

s part of(13,31)=true, s part of(13,32)=true, first(13)=a,

last(13)=t, lenght(13)=4, single char(31)=true,

single char(32)=true, type of(31)=allcaps, type of(32)=allcaps,

word to string(14)=transition, ..., word to string(30)=cell,

type of(3)=upperinitial, ..., type of(29)=alphanumeric,

type pos(3)=nnp, ..., type pos(30)=nns, word frequency(3)=1,

..., word frequency(30)=2, word category(7)=disease, ...,

word category(9)=disease, ..., word category(28)=nucleic acid,

distance word category(7,9)=2, ..., distance word category(27,28)=1,

follows(3,4)=true, follows(4,5)=true, ..., follows(29,30)=true

The constant 2 denotes the sentence described in this clause, which belongs to
an abstract of the collection, while the constants 3, 4, ..., 30 denote identifiers
of tokens which are described in the body of the clause.

3.2 Background Knowledge

The background knowledge includes a transitive definition of the relation of
“indirect successor”:

tfollows(X,Y)=true ← follows(X,Y)=true
tfollows(X,Y)=true ← follows(X,Z)=true, tfollows(Z,Y)=true

as well as a number of clauses that express the synonymy between (stemmed)
biological terms such as:

word to string(X)=transit ← word to string(X)=transversion
word to string(X)=substitut ← word to string(X)=replac

2 Here, the first-order literals p(X, Y ) and ¬p(X, Y ) will be represented as
fp(X,Y)=true and fp(X,Y)=false, respectively, where fp is the function symbol as-
sociated to the predicate p. This means that we deal with classical negation, ¬, but
not with negation by failure, not [17].
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The learning system used in this work makes the automated change of repre-
sentation possible for training examples. This form of abstraction is very useful
for tuning the representation of the training examples without acting on the pro-
cedures developed for text pre-processing. In this work, the following predicates
are intensionally defined in the background knowledge:

char number char(X)=true← first is char(X)=true,
middle is numeric(X)=true, last is char(X)=true

number char char(X)=true← first is numeric(X)=true,
middle is char(X)=true, last is char(X)=true

char char number(X)=true← first is char(X)=true,
middle is char(X)=true, last is numeric(X)=true

They can appear in the body of learned clauses, while predicates on the mor-
phological nature of alphanumeric strings (e.g., first is char, middle is char,
etc.) cannot.

Finally, a typified form of both direct and transitive successor relations is also
introduced. Some examples are reported in the following:

follows string jj(Y)=Z ←
word to string(X)=Z, follows(X,Y)=true, type pos(Y)=jj

follows nn string(X)=Z←
type pos(X)=nn, follows(X,Y)=true, word to string(Y)=Z

tfollows vb nn(X,Y)=true←
type pos(X)=vb, tfollows(X,Y)=true, type pos(Y)=nn

tfollows jj nn(X,Y)=true←

The first two clauses express the direct successor relations between a generic
string and an adjective or a noun, while the last two clauses specify the transitive
successor relations for verb-noun and adjective-noun pairs, respectively.

4 Learning Recursive Patterns

Tagging rules for automated entity extraction are automatically learned in the
form of recursive logical theories which can naturally represent conceptual depen-
dencies between named entities. Indeed multiple predicate learning (or multiple
concept learning) and recursive theory learning are two faces of the same coin.
In this application, each concept plays the role of an annotation class (i.e., tem-
plate slot) and each textual object can be associated with at most one concept,
i.e., concepts are considered mutually exclusive. The system used in this learning
problem is ATRE3 [18] which solves the following learning problem:

Given
• a set of concepts K1, K2, . . . , Kr to be learned,
• a set of observations O described in a language LO,
• a background knowledge BK described in a language LBK ,

3 http://www.di.uniba.it/∼malerba/software/atre
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• a language of hypotheses LH that defines the space of hypotheses SH

• a user’s preference criterion PC,

Find
a (possibly recursive) logical theory T ∈ SH , defining the concepts K1, K2, . . . ,
Kr, such that T is complete and consistent with respect to the set of observations
O and satisfies the preference criterion PC.

Both the language of hypotheses LH and the language of background knowl-
edge LBK are limited to linked, range-restricted definite clauses [8]. Observa-
tions are represented as ground multiple-head clauses, called objects, which have
a conjunction of literals in the head. Each object is associated with a unique
object identifier (OID). The notion of multiple-head clauses in ATRE adapts
the notion of interpretation, which is common to many relational data min-
ing systems for efficiency reasons [9]. ATRE distinguishes objects from exam-
ples, which are described as pairs 〈L, OID〉, where L is a literal in the head of
the object identified by OID. Examples can be considered positive or negative,
according to the concept to be learned. For instance 〈annotation(x10)=locus,
O1〉 is a positive example of the concept annotation(X)=locus and a nega-
tive example of the concept annotation(X)=type. Actually, in this work, the
set of concepts to be learned is defined by means of a set of literals of the
type annotation(X)=annotation class. No clause is generated for the concept
annotation(X)=no tag.

At the high-level ATRE implements a sequential covering algorithm [19]. A
recursive theory T is built iteratively, starting from an empty theory T0, and
then adding a new clause at each iteration. In this way we obtain a sequence of
theories:

T0 = ∅, T1, . . . , Ti, Ti+1, . . . , Tn = T

such that Ti+1 = Ti∪{C} for some clause C and LHM(Ti) ⊆ LHM(Ti+1), where
LHM(T ) denotes the least Herbrand model of a theory T . Let pos(LHM(T ))
and neg(LHM(T )) be the number of positive and negative examples in LHM(T ),
respectively. If we guarantee that:

1. pos(LHM(Ti)) < pos(LHM(Ti+1)), for each i ∈ {0, 1, . . . , n− 1} and
2. neg(LHM(Ti)) = 0, for each i ∈ {0, 1, . . . , n},

then, after a finite number of iterations, a theory T , which is complete and con-
sistent, is built. The first condition is guaranteed by selecting a positive example
(or seed) e+ /∈ LHM(Ti) of a concept Kj to be learned, and then by looking for
a clause C, if any, such that e+ ∈ LHM(Ti∪{C}) (i.e., pos(LHM(Ti∪{C})) >
pos(LHM(Ti))). The second condition is more difficult to guarantee since the
addition of a locally consistent clause C to a theory Ti does not preserve consis-
tency of Ti ∪ {C} (non-monotonicity of the normal ILP setting). The approach
followed in ATRE consists of simple syntactic changes in Ti, which eventually
creates new layers [18].

The automated discovery of dependencies between concepts K1, K2, . . ., Kr

is based on a variant of the sequential covering learning strategy, which is
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traditionally adopted by single concept learning systems that generate clauses
with the same literal in the head at each iteration. In multiple concept learning,
clauses generated at each iteration may refer to different concepts. In addition,
the body of the clause generated at the i-th iteration may involve any concept
K1, K2, . . ., Kr for which at least a clause has been added to the theory partially
learned in previous iterations. In this way, dependencies between concepts can
be generated.

At each iteration of the main loop of the sequential covering algorithm, clauses
for distinct concepts are generated, and then one of them is picked. Since the
generation of a clause depends on a seed, several seeds have to be chosen (if any,
at least one seed per concept to be learned). Therefore, the search space is a
forest of as many search-trees as the number of chosen seeds. Each search-tree
is rooted with a unit clause and ordered by the generalization model adopted
in ATRE (generalized implication [18]). The forest can be processed in parallel
by as many concurrent tasks as the number of search-trees. Each task traverses
the specialization hierarchy top-down through a sequential covering strategy,
but synchronizes traversal with the other tasks at each level. Search proceeds
toward deeper and deeper levels of the specialization hierarchies until at least a
user-defined number of consistent clauses is found. Task synchronization is per-
formed after that all “relevant” clauses at the same depth have been examined.
A supervisor task decides whether the search should carry on or not on the basis
of the results returned by the concurrent tasks. When the search is stopped, the
supervisor selects the “best” consistent clause according to the user’s preference
criterion. This search strategy provides us with a solution to the problem of
interleaving the induction of distinct concept definitions.

Actually, several special-purpose techniques have been designed specifically for
the inductive synthesis of recursive logic theories. They are overviewed in [12]. As
observed by Flener and Yilmaz, they are all non-incremental, i.e., the training
examples are input all-at-once, therefore, the distinction of bottom-up versus
top-down induction4 does not really apply to them. Incremental techniques do
not seem to be a promising research avenue for recursive theory learning (or,
equivalently, for multiple concept learning), because they are often very sensitive
to the ordering of the examples, which is not really adequate considering the
fragile nature of recursive theories.

5 Experiments

We considered a data set of seventy-four papers concerning mithocondrial mu-
tations selected for the annotation of HmtDB5. We considered the abstract of
each paper and 228 target sentences out of 581 sentences. The total number of
annotated tokens is 362, that is, 1.58 tokens per target sentence and 4.89 per
4 In the bottom-up (top-down) approach the theory monotonically evolve from the

maximally specific one (the maximally general one).
5 The data set is available at

http://www.di.uniba.it/∼malerba/software/atre/index.htm#Exp9
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abstract. They correspond to about 9.3% of the total number of tokens that are
described in the data set. The remaining tokens, that is 3004, are considered as
no tagged tokens (i.e., as negative examples for all concepts to be learned).

The dataset is clearly imbalanced. However, it should be noted that the learn-
ing strategy implemented in ATRE is not affected by imbalanced data, since the
goal is not to maximize the accuracy [23] but to generate consistent theories.
Other systems that suffer from this problem may prove unsuitable for the task
at hand, since they generate trivial classifiers.

Performances are evaluated by means of a 6-fold cross-validation, that is,
the set of seventy-four abstracts is firstly divided into six folds (see Table 1),
and then, for every fold, ATRE is trained on the remaining folds and tested on
the hold-out fold. Results have been evaluated along several criteria. For each
concept, we computed both the number of omission and commission errors and
the value of precision and recall. Omission errors occur when annotations of
tokens are missed, while commission errors occur when wrong annotations are
“recommended” by some clause. The omission measure is reported as the ratio
of the number of omission errors and the number of positive examples, while the
commission measure as the ratio of the number of commission errors and the
total number of examples. The recall measure is computed as the ratio of positive
examples correctly annotated (i.e., true positives) and the sum of true positives
and false negatives (i.e., omission errors). The precision measure is computed as
the ratio of true positives and the sum of true positives and false positives (i.e.,
commission errors). Experimental results are reported in Table 2 for each fold.
No omission error is reported for type position when the third fold is held-out
because there are no positive examples to test on.

Table 1. Distribution of examples per folds

Fold # sen-
tences

#
locus

# posi-
tion

# sub-
stitution

#
type

# type
position

#
no tag

# literals
in body

1 36 16 12 4 8 12 452 2424

2 40 27 13 2 5 4 546 2552

3 40 22 14 6 17 0 510 3098

4 34 16 6 5 17 23 517 3260

5 39 24 15 8 8 19 485 3083

6 27 14 6 2 6 31 494 3199

Total 228 119 66 27 61 89 3004 17793

The high variability among folds is mainly due to a heterogeneous distrib-
ution of examples that leads to different degrees of data sparseness. However,
the percentage of commission errors is very low with respect to the percent-
age of omission errors (the system misses annotations rather than suggesting
wrong annotations) independently of the fold. This means that learned rules are
quite specific. By considering the complexity of learned theories (see Table 3),
coverage rate can explain recall values. Best performances are obtained on the
substitution class for which the system learns a more general and accurate



Learning Recursive Patterns for Biomedical Information Extraction 89

Table 2. Experimental results (percentage values): Average number and standard
deviation of omission errors over positive ex., commission errors over negative ex.,
precision and recall

Fold locus position substitution type type position
omiss. comm. omiss. comm. omiss. comm. omiss. comm. omiss. comm.

1 68.750 0.205 83.333 0.203 75 0 25 0.202 91.667 0.203

2 70.370 0.516 61.538 0.168 100 0 20 0.332 100 0

3 54.545 0.548 21.429 0 66.667 0 29.412 0.181 – 0.351

4 43.750 0.176 50 1.038 60 0.345 17.647 0 82.609 1.070

5 41.667 0.562 20 0.184 100 0.727 62.500 0.545 73.684 0.372

6 85.714 3.154 50 0 100 0 33.333 0.366 77.419 0.575

Avg 60.799 0.860 47.717 0.266 83.611 0.179 31.315 0.271 – 0.428

St.D. 17.155 1.137 24.205 0.389 18.572 0.302 16.340 0.187 – 0.368

Avg St.D. Avg St.D. Avg St.D. Avg St.D. Avg St.D.
Prec. 77.305 18.387 81.355 25.258 87.778 19.052 65.972 23.632 74.009 37.073

Rec. 67.093 20.916 50.596 23.130 89.167 17.440 31.315 16.340 – –

Table 3. Complexity of the learned theories: number of positive examples over number
of learned clauses per concept and average values

Fold locus position substitution type type position
1 16/35 12/23 4/3 8/34 12/15

2 27/30 13/23 2/2 5/2 4/17

3 22/34 14/20 6/1 17/30 0/16

4 16/32 6/19 5/2 17/26 23/13

5 24/27 15/17 8/2 8/27 19/14

6 14/36 6/24 2/2 6/22 31/11

Avg 0.63 0.54 2.64 0.37 1.16

theory. Indeed, examples of this class are the most homogeneous and the pre-
processing module is able to produce discriminative descriptions. Conversely,
worst performances of the system are related to the type class for which the
lowest value of coverage rate is reported. Some low recall values and overfitted
theories are due to the preprocessing module which is not completely apt to
manage the variety of morpho-syntactic variations on the same term that affect
this application domain. By scanning the learned theories, we observe that for
some annotation classes, namely locus and type position, many clauses do take
into account only lexical information specified by the predicate word to string.
Actually, learning tasks for these two classes appear to be intrinsically more com-
plex since we observe the highest percentage of commission errors despite the
the highest percentage of positive examples available. As regards the percentage
of omission errors, we notice that while it is positively correlated to the number
of discovered clauses, it results uncorrelated to the number of positive examples.

We adopt the same experimental setting to run the system by disabling the
search for recursive definitions in the space of clauses. In this experiment, the
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system explores a specialization hierarchy for one concept at a time and learned
theories are independently generated. Results are reported in Table 4. By com-
paring precision and recall values observed in the two experiments, we conclude
that recursive theory learning improves performances for both locus and type
classes, while it does not affect the results for the position and the substitution
classes. This observation justifies the computational effort spent for learning
recursive theories in this IE task.

Table 4. Experimental results obtained by disabling recursion (percentage values): Av-
erage number and standard deviation of omission errors over positive ex., commission
errors over negative ex., precision and recall

Fold locus position substitution type type position
omiss. comm. omiss. comm. omiss. comm. omiss. comm. omiss. comm.

1 75 0.205 83.33 0.203 75 0 75 0.202 100 0.203

2 59.26 0.516 61.54 0.168 100 0 80 0.332 100 0

3 63.64 0.731 21.43 0 66.67 0 35.29 0.181 – 0.351

4 62.50 0.880 50.00 1.038 60 0.345 29.41 0 91.30 0.891

5 41.67 0.562 20 0.184 100 0.727 62.50 0.545 63.16 0

6 64.29 2.597 50.00 0 100 0 50 0.366 64.52 0.575

Avg 61.058 0.915 47.717 0.266 83.611 0.179 55.368 0.271 – 0.337

St.D. 20.729 0.187 24.205 0.389 18.572 0.302 10.888 0.855 – 0.349

Avg St.D. Avg St.D. Avg St.D. Avg St.D. Avg St.D.
Prec. 72.836 18.568 81.355 25.258 87.778 19.052 76.766 16.041 76.672 38.299

Rec. 61.058 10.888 50.596 23.130 89.167 17.440 55.368 20.729 – –

For the sake of completeness, some clauses learned by ATRE have been ana-
lyzed. Some of them follow:

annotation(X1)=type position← char number char(X1)=true
annotation(X1)=type position← tfollows string nn(X2)=trnaser,

type of(X1)=alphanumeric
annotation(X1)=position← follows(X2,X1)=true,

type of(X1)=numeric, follows(X1,X3)=true,
word category(X3)=gene, word to string(X2)=position

The first clause states that X1 is labeled as type position if it is an alphanu-
meric token composed by a char, a number and another char. This is one of
the first clauses that ATRE adds to the learned theory and covers many exam-
ples. Actually, information on type position of a mutation are tokens such as
A1262G, that means that A is substituted by G at position 1262 of the DNA.
The second clause concerns the same concept and it states that X1 is labeled
as type position if it is an alphanumeric token which is followed by the string
trnaser. This matches patterns where type position information occurs in the
neighborhood of gene names (e.g., trnaser). The third clause states that X1 is
labeled as position if it is a numeric token which succeeds the token “position”
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and precedes a token of the “gene” category. This clause captures patterns like
“an A-to-G mutation at position 3426 (tRNALeu)”.

Meaningful dependencies have been also discovered such as the following:

annotation(X1)=type← follows(X1,X2)=true,
word frequency(X2) ∈ [8..140],
follows(X3,X1)=true, annotation(X3)=substitution

It states that X1 is annotated as type if it precedes a frequent token and suc-
ceeds another token which has been annotated as substitution. Another example
of discovered concept dependency is the following:

annotation(X1)=position← follows(X2,X1)=true
annotation(X2)=substitution, follows(X3,X1)=true,
follows(X1,X4)=true, word frequency(X4) ∈ [6..6],
annotation(X3)=type, follows(X1,X5)=true,
annotation(X5)=locus, word frequency(X1) ∈ [1..2]

This clause states that X1 is annotated as position if it succeeds two tokens
which have been annotated as type and substitution, respectively. Moreover it
precedes a token occurring about 6 times in the abstract and that is followed by
a locus annotation. Finally, X1 is quite infrequent in the abstract. It matches
text portions like the following: “a G-to-A (X2) transition (X3) at nucleotide pair
14459 (X1), changed a moderately conserved alanine to a valine at NADH (X4)
dehydrogenase subunit 6 (ND6) (X6) residue 72”.

6 Conclusions

ILP provides appropriate computational solutions for problems posed by bio-
medical IE thanks to its adequacy to work with first-order logic representations
of texts and to its suitability to take advantage of the abundant domain knowl-
edge. Template filling tasks appear to be especially challenging for ILP, since
they raise problems that are peculiar of link-learning tasks, where examples, in
addition to their inherent relational structure, present relations to other exam-
ples [14]. Intuitively, template filling operations can be simplified when tagging
of named entities is performed by considering some conceptual dependencies
implicitly defined among entities of the same template. In this paper, we have
proposed an application of recursive theory learning to a real-world IE task on
the biomedical literature. Recursive patterns are discovered by inducing mutu-
ally dependent definitions of concepts by means of the ILP system ATRE. This
system allows us to discover meaningful patterns among biomedical entities of
interest. Results obtained on a limited number of documents show that high
performances are obtained when descriptions of examples are safe from inconsis-
tencies due to morpho-syntactic variations that are not completely handled by
the preprocessing module. Moreover, results show that when learned theories can
express mutual dependencies between concepts tagging performances improves.

As future work, further experiments on some recently made available biomed-
ical datasets for ILP [7] will be conducted. We also plan to examine benefits of
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discovering template slot dependencies in reconstructing records of a complete
template filling task. Finally, the application of a transductive framework [25] is
worth to be investigated because of the high disproportion between the number
of labeled documents and that of unlabeled documents available in IE tasks.
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Abstract. Logic programs with annotated disjunctions, or LPADs, are
an elegant knowledge representation formalism that can be used to com-
bine first order logical and probabilistic inference. While LPADs can be
written manually, one can also consider the question of how to learn
them from data. Methods for learning restricted classes of LPADs have
been proposed before, but the problem of learning any kind of LPADs
was still open. In this paper, we describe a reduction of non-recursive
LPADs with a finite Herbrand universe to Bayesian networks. This re-
duction makes it possible to learn such LPADs using standard learning
techniques for Bayesian networks. Thus the class of learnable LPADs is
extended.

1 Introduction

Logic programs with annotated disjunctions, LPADs for short, have been intro-
duced by Vennekens, Verbaeten and Bruynooghe (2004) as a knowledge represen-
tation formalism that can be used to combine probabilistic and logic inference.
It is a simple and elegant formalism: LPADs are easy to write and interpret, and
have formally defined semantics. But while Vennekens et al. define the syntax
and semantics of LPADs and illustrate their broad applicability, they do not
discuss learning in this framework. Yet learning LPADs is of interest: because
LPADs express explicitly the causal structure of stochastic processes, learning
them amounts to explicitating this causal structure from observations. It is well
known that Bayesian networks, for instance, do not exhibit this property: edges
in a Bayesian network do not necessarily indicate a causal relationship.

Riguzzi (2004) proposes an algorithm for learning LPADs. However, only a
subclass of LPADs can be learned with his method, and Riguzzi does not discuss
whether the subclass is semantically equivalent to the class of all LPADs, that is,
whether for each LPAD a semantically equivalent LPAD in the subclass exists.

In this paper we introduce two novel subclasses of LPADs: 1-compliant LPADs
and CP-compliant LPADs. We show that each LPAD can be rewritten as a se-
mantically equivalent 1-compliant LPAD; that each 1-compliant LPAD is CP-
compliant; and that there is a transformation from (non-recursive, finite-universe)
CP-compliant LPADs to Bayesian networks that preserves the LPADs seman-
tics and includes a one-to-one mapping between the LPAD parameters and the
Bayesian net parameters.
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As a consequence, the many advanced techniques for learning Bayesian net-
works (both parameters and structure) can be exploited for learning a broad
class of LPADs. This class includes LPADs that were not previously learnable.

In the following, we first give the intuitions behind the method (Section 2).
Then we treat it more formally: we recall several definitions from the original
LPAD paper in Section 3, introduce CP-compliant LPADs in Section 4, and
discuss the transformation of LPADs into CP-compliant LPADs in Section 5. In
Section 6 we discuss the transformation to Bayesian networks. We briefly discuss
learning in Section 7 and wrap up in Section 8.

Note that this work focuses on a specific formal relationship between LPADs
and Bayesian networks that can be exploited for learning LPADs. There is no
experimental study of learning techniques. Obviously, through the proposed re-
duction, many well-studied techniques for learning Bayesian networks become
available for learning LPADs. Which of these work best in this specific context
is a subject for later work.

2 Intuitions

An LPAD can be seen as a set of if-then-rules, where each rule has several
possible conclusions, each of which has a certain probability assigned to it. The
rule makes exactly one of the conclusions true with the associated probability.
For instance,

(heads(C) : 0.5) ∨ (tails(C) : 0.5)← cointoss(C)

expresses that if we toss a coin and call the result C, C is heads or tails each
with 50% probability.

While in principle the probabilities in the head add up to one, it is possible to
write a rule where the sum is less than one; there is then an implicit, anonymous,
proposition that is made true with the remaining probability. Thus,

(result(C, 6) : 0.167)← dieroll(C)

expresses that a die roll has 16.7% probability to result in a six. There is then an
83.3% probability to have some other result, but we are not interested in what
those other results are.

Multiple rules in an LPAD may lead to the same conclusions. Take, for in-
stance, the following logic program

wet ← gone swimming
wet ← rain

which expresses that if I have gone swimming or if it is raining, my hair is wet.
If we assume that the rules do not hold in 100% of the cases, for instance,

I dry my hair immediately after swimming in 30% of the cases, and I use an
umbrella when it is raining in 60% of the cases, then we could indicate this as:

wet : 0.7 ← gone swimming
wet : 0.4 ← rain
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The numbers associated with wet now indicate the probability that the event
mentioned in the rule body causes my hair to get wet. We will use the conven-
tion that when the probability is 1, it may be omitted. The LPAD rule is then
equivalent to a regular logic programming clause.

It is part of the semantics of LPADs (see Section 3) that each rule inde-
pendently of all other rules makes one of its head atoms true when triggered.
LPADs are therefore particularly suitable for describing models that contain a
number of independent stochastic events or causal processes [4]. Consequently,
learning LPADs amounts to discovering the causal structure of possibly complex
processes.

It may be tempting to interpret the numbers as the conditional probability of
wet given the body, e.g., Pr(wet|rain) = 0.4. However, this would be incorrect.
The conditional probability that my hair is wet, given that it is raining, is higher
than 0.4, because there is a second possible cause for my hair getting wet, namely
the swimming. To compute this conditional probability, we need information on
the probability that I have gone swimming. For instance, with

wet : 0.7 ← gone swimming
wet : 0.4 ← rain
gone swimming : 0.1.
rain : 0.3.

we can say that Pr(wet|rain) = 0.4 + 0.1 ∗ 0.7 ∗ 0.6 = 0.442 : the rain causes my
hair to get wet with probability 0.4 but there is also a probability of 0.1 that I
have gone swimming, and hence a probability of 0.1*0.7*0.6 that my hair is wet
not because of the rain but because of swimming.

Thus, for head atoms that occur in multiple rules, the relationship between
the mentioned probabilities and conditional probabilities is somewhat complex.
But it is not unintuitive. The meaning of the probabilities mentioned in the
rules is quite simple: they reflect the probability that the body causes the head
to become true. This is different from the conditional probability that the head
is true given the body, but among the two, the former is the more natural one to
express. Indeed, the former is local knowledge: we can estimate the probability
that rain causes wet without considering any other possible causes for wet. To
estimate Pr(wet|rain), we need global knowledge: we need to know all possible
causes for wet, the probability of them occurring, and how they interact with
rain.

Arguing that the probabilities in the rules are unintuitive when they do not re-
flect conditional probabilities, some researchers have proposed to focus on LPADs
where all probabilities are conditional probabilities. Let us call such LPADs CP-
compliant LPADs (CP for conditional probabilities). Riguzzi [3] proves that,
when in an LPAD any two rules sharing head atoms have mutually exclusive
bodies (i.e., there exist no interpretations for which both bodies are true; we call
such an LPAD ME-compliant), then it is CP-compliant. Exploiting this property,
Riguzzi proposes a learning algorithm for ME-compliant LPADs.

The above example shows that non-ME-compliant LPADs are by no means
far-fetched; they may express knowledge in a straightforward and interpretable
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way. For that reason, limiting ourselves to ME-compliant LPADs seems unde-
sirable.

In this paper we show that any LPAD, ME-compliant or not, can be rewritten
into a CP-compliant LPAD. If this LPAD is non-recursive and has a finite Her-
brand universe, it can in turn be translated into a Bayesian network1 in which
the conditional probability tables contain exactly the conditional probabilities
occurring in the CP-compliant LPAD. As a consequence, if we can learn such
Bayesian networks, we have a method for learning any non-recursive LPAD with
a finite Herbrand universe.

The conversion from LPAD to CP-compliant LPAD goes as follows. To avoid
that head atoms occur in the head of multiple rules, we annotate them with
an index that uniquely identifies their rule. To preserve the semantics, we add
regular logic programming clauses (or, LPAD rules with one head atom with
annotation 1) defining the original predicates in terms of the indexed predicates.
Thus, the LPAD

wet : 0.7 ← gone swimming
wet : 0.4 ← rain

is turned into the semantically equivalent LPAD

wet1 : 0.7← gone swimming
wet2 : 0.4← rain
wet← wet1
wet← wet2

LPADs resulting from this conversion have the property that head atoms can
only be shared by multiple rules if their annotation is 1; we call such LPADs
1-compliant. We prove in this paper that the conversion preserves the LPAD’s
semantics and that all 1-compliant LPADS are CP-compliant.

A non-recursive CP-compliant LPAD can be converted into a Bayesian net-
work as follows. First, the LPAD is grounded; from now on we refer only to the
ground LPAD. The Bayesian network will have one variable for each atom in
the ground LPAD, except the indexed atoms: since all atoms with index i are
mutually exclusive, we can represent them with a single variable Ci instead of
introducing a separate boolean variable for each of them. Ci takes on value j if
rule i selects its j’th head atom, and 0 if no listed atom is selected. For each Ci

we then have one node in the Bayesian network, which has as parent nodes the
body atoms of rule i, and its CPD reflects that Ci = j with the corresponding
probability if all body literals are true, and Ci = 0 otherwise. The original head
atoms are also nodes in the Bayesian network: if h occurs as the j’th head atom
of rule i, then h has Ci as a parent and its CPD reflects that h is true whenever
Ci = j.

The CP-compliant LPAD just mentioned is shown as a Bayesian network in
Fig. 1.
1 A recursive LPAD would give rise to cycles in the Bayesian network, which are not

allowed. An infinite Herbrand universe would give rise to an infinite Bayesian net.
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Fig. 1. A Bayesian network corresponding to our example CP-compliant LPAD. The
probabilities in boldface are those occurring explicitly in the LPAD.

In the remainder of this text, we define the transformation more formally,
show that it always yields CP-compliant (though not ME-compliant) LPADs,
and show how to construct from a CP-compliant LPAD a semantically equiva-
lent Bayesian network. Learning (non-recursive, finite-universe) LPADs will thus
be formally reduced to learning Bayesian networks, for which many techniques
already exist.

3 LPADs: Syntax and Semantics

We start with a brief overview of the syntax and semantics of LPADs, as given
by Vennekens et al. [5]. We assume familiarity with standard logic program-
ming terminology (atoms, literals, Herbrand universe, Herbrand base, variable
substitutions, groundings, etc.). See Lloyd [1] for an introduction on this.

An LPAD consists of a set of rules of the following form:

(h1 : α1) ∨ (h2 : α2) ∨ . . . ∨ (hn : αn)← b1, b2, . . . , bm.

with hi atoms and bi literals in the logical sense, all αi ∈ [0, 1], and
∑n

i=1 αi = 1.
We call the set of all (hi : αi) the head of the rule c, denoted head(c), and the
set of all bi the body, denoted body(c). If the head contains only one atom h : 1,
we may write it as h.

The semantics of an LPAD is defined using its grounding. We denote the set
of all ground LPADs with PG . Given an LPAD P , IP is the set of all Herbrand
interpretations of P . The Herbrand base of P is denoted HP . The semantics of
an LPAD is defined as a probability distribution on IP , as follows.

Definition 1. Let P ∈ PG. An admissible probability distribution π on IP is a
mapping from IP to [0, 1] such that

∑
I∈IP

π(I) = 1.

Definition 2. Let P ∈ PG. A selection σ is a function that selects one pair
(h : α) from each rule of P , i.e., σ : P → (HP × [0, 1]) such that for each c ∈ P ,
σ(c) ∈ head(c). With σ(c) = h : α, we also write σatom = h and σprob = α. The
set of all selections σ is denoted by SP .
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Definition 3. Let P ∈ PG and σ ∈ SP . The instance Pσ chosen by σ is defined
as Pσ = {σatom(c)← body(c)|c ∈ P}.
Definition 4. Let P ∈ PG and σ ∈ SP . The probability of σ is

Cσ =
∏

c∈P

σprob(c).

This definition of the probability of a selection implies that the selection of a
head atom in one rule is stochastically independent from the selection of head
atoms in all other rules.

The following definition defines the LPADs to which we can give meaning:

Definition 5. An LPAD P is sound iff for each σ ∈ SP , the well founded model
of Pσ, denoted WFM(Pσ), is two-valued.

Since we only consider two-valued well-founded models, we can represent the
well-founded model as a single interpretation. We will use this convention in the
remainder of the paper.

Given an interpretation I, we denote the set of all σ∈SP for which WFM(Pσ)=
I as SI

P . The semantics of a sound LPAD is then defined as follows.

Definition 6. Let P ∈ PG be a sound LPAD. For each of its interpretations
I ∈ IP , the probability π∗

P (I) assigned by P to I is the sum of the probabilities
of all selections that lead to I, i.e.,

π∗
P (I) =

∑

σ∈SI
P

Cσ.

Vennekens et al. [5] prove that if P is a sound LPAD in PG , then π∗
P is an

admissible probability distribution over IP . This defines the semantics of any
sound LPAD.

We next recall the definition of the probability of a logic formula, again from
Vennekens et al.

Definition 7. For any logic formula φ, the set of Herbrand models of φ is de-
noted and defined as

Iφ
P = {I ∈ IP |I |= φ}.

Definition 8. Let P be a sound LPAD in PG. The probability of φ according to
P , denoted π∗

P (φ), is defined as

π∗
P (φ) =

∑

I∈Iφ
P

π∗
P (I).

We add the notion of conditional probability:

Definition 9. Let P be a sound LPAD in PG. The conditional probability of φ
given ψ, according to P , is denoted and defined as

π∗
P (φ|ψ) = π∗

P (φ ∧ ψ)/π∗
P (ψ)

if π∗
P (ψ) > 0 (and undefined otherwise).
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When P is clear from the context, we will often denote π∗
P (φ) as Pr(φ) and

π∗
P (φ|ψ) as Pr(φ|ψ).
As said before, one should take care not to interpret αi Pr(hi|B), the condi-

tional probability of hi given the body B. However, LPADs generally do have
the property that Pr(hi|B) ≥ αi [5].

4 CP-Compliant LPADs

Riguzzi [3] presents a learning algorithm for a subclass of LPADs, which we will
refer to as ME-compliant LPADs. The definition is as follows.

Definition 10 (ME-compliant LPADs). An ME-compliant LPAD is an
LPAD in which for each two rules H1 ← B1 and H2 ← B2 it holds that (a) H1

and H2 do not share any atoms, or (b) B1 and B2 are mutually exclusive.

Under these conditions, it holds for each annotated head atom hi : αi in a rule
that Pr(hi|B) = αi with B the body of the rule. We call LPADs fulfilling this
property CP-compliant.

Definition 11 (CP-compliant LPADs). A CP-compliant LPAD is an LPAD
in which for each rule H ← B it holds that ∀(hi : αi) ∈ H : Pr(hi|B) = αi.

CP-compliance is important because conditional probabilities can easily be es-
timated from data: if an LPAD is CP-compliant, then its parameters can be
estimated equally easily. This property is exploited by Riguzzi to learn the αi

parameters of ME-compliant LPADs from data.
Now we introduce a different subclass of LPADs, which (as we shall prove) also

has the property that all parameters to be estimated are conditional probabili-
ties. We call this subclass 1-compliant LPADs. The name refers to the property
that each head atom either occurs only in the head of a single rule, or its anno-
tation is 1 in all the heads where it occurs.

Definition 12 (1-compliant LPADs). A 1-compliant LPAD is an LPAD in
which for each atom h that occurs in the head of a rule, it holds that either h
occurs in only one rule (i.e., it cannot be unified with any atom in the head of
any other rule), or it always occurs with an annotation of 1.

1-compliant LPADs are of the same form as the transformed LPAD we mentioned
in our intuitive treatment.

In the syntactic sense, our CP-compliant LPADs are neither a subclass nor
a superclass of Riguzzi’s ME-compliant LPADs. Riguzzi allows several rules to
share head atoms as long as their bodies are mutually exclusive, which is gener-
ally not allowed in CP-compliant LPADs. On the other hand, we allow rules to
share head atoms even if their bodies are not mutually exclusive, as long as the
probabilities of these atoms are one.

Riguzzi shows that ME-compliant LPADs are CP-compliant. We now show
that 1-compliant LPADs are CP-compliant.
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Table 1. Algorithm for transforming LPADs into CP-compliant LPADs

function Transform(P : LPAD) returns CP-compliant LPAD
P ′ := ∅
for each rule (hi1 : αi1 ∨ . . . ∨ hini

: αini
← Bi) ∈ P :

let h′

ij be hij with its predicate name p changed into pi

P ′ := P ′ ∪ {h′

ij : αi1 ∨ . . . ∨ h′

ini
: αini

← Bi}
P ′ := P ′ ∪

Sni

j=1{hij ← h′

ij}

return P ′

Theorem 1. In a 1-compliant LPAD, for each rule of the form h1 : α1∨. . .∨hn :
αn ← B, Pr(hi|B) = αi. That is, each αi can be interpreted as the conditional
probability that its atom is true, given that the rule body is true.

Proof. According to the definition of a 1-compliant LPAD, for each hi : αi in a
rule head with body B, it holds that either (a) hi does not occur in any other
rule heads, or (b) αi = 1.
Case (a): Pr(hi|B) = αi follows from Riguzzi’s proof of Theorem 1 [3]. While
the theorem states that for any rule, αi = Pr(hi|B) if all the rules (in the whole
LPAD) sharing head atoms have mutually exclusive bodies, the proof in fact
just exploits the mutual exclusion property for the rule for which the equality is
proven. Case (a) implies this property.
Case (b): We know from the definition of LPADs and their semantics that αi ≤
Pr(hi|B) ≤ 1. If αi = 1, this implies Pr(hi|B) = αi.

5 Transforming LPADs to 1-Compliant LPADs

An algorithm for transforming LPADs into 1-compliant LPADs is shown in Ta-
ble 1. The algorithm just adds an index i to the predicate names of all the head
atoms of each rule ci, and adds rules stating that the original (unindexed) version
of the atom must be true if its indexed version is true.

Example 1. Consider the following LPAD:

(a : 0.5) ∨ (b : 0.5)← c
(b : 0.2) ∨ (c : 0.8)← d

The i-th rule is transformed by just adding an index i to each atom in the
head:

(a1 : 0.5) ∨ (b1 : 0.5)← c
(b2 : 0.2) ∨ (c2 : 0.8)← d

and the following rules are added:

a ← a1

b ← b1

b ← b2

c ← c2
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Theorem 2. The transformation yields a 1-compliant LPAD.

Proof. The resulting program consists of two types of rules: rules with indexed
atoms in the head (type 1 rules) and rules with original atoms in the head (type
2 rules). A type 1 rule cannot share a head atom with any other rule: not with
a type 2 rule because it has only indexed atoms in the head (and type 2 rules
contain only original atoms), and not with other type 1 rules because the indexes
differ. Only type 2 rules can therefore share head atoms, but they all have a single
head atom with annotation 1. Consequently, the conditions for 1-compliance are
fulfilled.

We now prove that the transformation preserves the semantics of the LPAD, in
the sense that any logic formula φ defined over the original LPAD has the same
probability according to the transformed LPAD.

Theorem 3. Let P ∈ PG be a sound LPAD, and let P ′ be the transformed
version of P . For each formula φ defined over P ,

π∗
P (φ) = π∗

P ′(φ)

Proof. First, we expand the left hand side of the equation:

π∗
P (φ) =

∑

I∈Iφ
P

∑

σ∈SI
P

∏

r∈P

σprob(r)

Define Sφ
P as the set of all selections σ for which WFM(Pσ) |= φ; that is,

Sφ
P =

⋃
{SI

P |I |= φ}. We can then shorten the above expression to

π∗
P (φ) =

∑

σ∈Sφ
P

∏

r∈P

σprob(r)

Similarly, for the right hand side we have

π∗
P ′(φ) =

∑

σ∈Sφ

P ′

∏

r∈P ′

σprob(r)

So we need to prove
∑

σ∈Sφ
P

∏

r∈P

σprob(r) =
∑

σ∈Sφ

P ′

∏

r∈P ′

σprob(r) (1)

We can define a one-to-one correspondence between SP and SP ′ as follows.
Let σ ∈ SP and σ′ ∈ SP ′ be such that

σ(P ) = {(h1s1 : α1s1), . . . , (hmsm : αmsm)}

σ′(P ′) =

⎧
⎨

⎩
(h′

1s1
: α1s1), . . . , (h

′
msm

: αmsm),
m⋃

i=1

ni⋃

j=1

{hij}

⎫
⎬

⎭
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(a : 0.3) ∨ (b : 0.4) ∨ (c : 0.3) ← B1 (a1 : 0.3) ∨ (b1 : 0.4) ∨ (c1 : 0.3) ← B1

(a : 0.1) ∨ (d : 0.5) ∨ (e : 0.1) ← B2 (a2 : 0.1) ∨ (d2 : 0.5) ∨ (e2 : 0.1) ← B2

(d : 0.5) ∨ (f : 0.5) ← B3 (d3 : 0.5) ∨ (f3 : 0.5) ← B3

a ← a1

a ← a2

b ← b1

c ← c1

d ← d2

d ← d3

e ← e2

f ← f3

Fig. 2. An illustration of the one-to-one correspondence between selections in P and
in P ′. For the program P to the left, the 1-compliant version P ′ is shown to the right.
For each selection σ for P there is precisely one selection σ′ for P ′ according to the
defined correspondence, and they have the properties that the probabilities of σ and
σ′ are equal and WFM(P ′

σ′) restricted to HP equals WFM(Pσ).

where m is the number of rules, ni is the number of head atoms in rule i and
si ∈ [1, ni]. This is clearly a one-to-one correspondence because both σ and σ′

map one-to-one to a vector (s1, s2, . . . , sm). Fig. 2 illustrates this correspondence
more graphically.

To prove Equation 1, it suffices to show that (1) this one-to-one-correspondence
carries over to Sφ

P and Sφ
P ′ , that is, σ ∈ Sφ

P ⇔ σ′ ∈ Sφ
P ′ , and (2) the probabilities

associated with corresponding selections are the same.

(1) We need to prove σ ∈ Sφ
P ⇒ σ′ ∈ Sφ

P ′ and σ �∈ Sφ
P ⇒ σ′ �∈ Sφ

P ′ . But since
σ �∈ Sφ

P is equivalent to σ ∈ S¬φ
P , it suffices to prove that the first implication

holds for any formula φ.
So assume σ ∈ Sφ

P ; this implies there is an I such that σ ∈ SI
P and I |= φ.

Now define I ′ = I ∪
{
h′

ij |hij ∈ σatom(P )
}
. We will prove that (1a) σ′ ∈ SP ′(I ′)

and (1b) I ′ |= φ; from this follows σ′ ∈ Sφ
P ′ .

(1a) σ′ is defined in such a way that Pσ contains hij ← Bi if and only if P ′
σ′

contains the clauses
{
hij ← h′

ij , h
′
ij ← Bi

}
. Thus, whenever hij can be derived

in Pσ, it can be derived in P ′
σ′ , and vice versa. In addition, whenever hij can be

derived in Pσ, h′
ij can be derived in P ′

σ′ . This proves that WFM(Pσ) = I if and
only if WFM(P ′

σ′) = I ′, in other words, σ ∈ SI
P ⇔ σ′ ∈ SP ′(I ′).

(1b) The formula φ refers only to original (non-indexed) predicates. Since I ′,
restricted to non-indexed predicates, equals I, I ′ |= φ if and only if I |= φ.

This proves the one-to-one correspondence between Sφ
P and Sφ

P ′ .
(2) If we multiply all the σprob as defined by σ and σ′ we get:

∏

r∈P

σprob(r) = α1s1 . . . αmsm

∏

r∈P ′

σ′
prob(r) = α1s1 . . . αmsm . 1 . . . 1︸ ︷︷ ︸

�
m
i=1 nitimes
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Thus the probability of σ and σ′ is the same. This concludes the proof.

Corollary 1. Any LPAD can be transformed into a 1-compliant, and therefore
CP-compliant, LPAD.

Corollary 2. ME-compliant LPADs can be transformed into 1-compliant LPADs.

6 A Reduction to Bayesian Networks

We now turn to the transformation of a 1-compliant LPAD into a Bayesian
network. From here on we assume LPADs to be non-recursive and have a finite
Herbrand universe.

First, the LPAD needs to be grounded. From here one, when we refer to the
LPAD, we mean the ground LPAD.

The nodes in the Bayesian network are the original LPAD atoms (which be-
come boolean variables) as well as so-called choice variables Ci (which are in-
cluded instead of the indexed atoms, as explained before). Each Ci takes integer
values in the interval [0, ni] where ni is the number of head atoms of LPAD rule
i. When Ci = j, this means the j’th atom of rule i has been selected. Ci = 0 will
be used to denote that no listed head atom was selected, which may be either
because the rule body is false, or because an anonymous atom was selected.

The conditional probability distribution (CPD) of each Ci has a very simple
structure, represented by the following function:

P (Ci = j|all parents true) = αj , for all j > 0
P (Ci = 0|all parents true) = 1−

∑
j αj

P (Ci = 0|not all parents true) = 1
P (Ci = j|not all parents true) = 0, for all j > 0

The CPD of a non-choice variable always expresses a logical or, since the
second part of our LPAD is essentially a standard logic program. For instance,
in the example, b is true if C1 = 2 or C2 = 1. This can be represented with a
simple CPD function:

P (hi = true|all parents false) = 0
P (hi = true|not all parents false) = 1

(the probabilities for hi=false are the complements).

Example 2. For the LPAD of Example 1, which in 1-compliant form became

a1 : 0.5 ∨ b1 : 0.5← c
b2 : 0.2 ∨ c2 : 0.8← d
a ← a1

b ← b1

b ← b2

c ← c2,

the corresponding Bayesian net is shown in Fig.3.
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Fig. 3. Bayesian net corresponding to the example LPAD

The algorithm to produce a Bayesian net from a 1-compliant LPAD is shown
in Table 2.

Thus, given an LPAD with certain parameters, it can be transformed into a
Bayesian network with a specific structure, consisting of two kinds of variables:
atom variables and choice variables. The CPD’s for the atom variables have a
fixed structure that is independent of the probabilities in the LPAD; they always
express a logical or. The CPD’s for the choice variables have a fixed structure
and contain only 0’s, 1’s, and the LPAD probabilities αij .

7 Perspectives on Learning LPADs

The previous sections contain the main contribution of the paper. In the following
we briefly discuss the perspectives on learning LPADs that our results entail.

7.1 Learning the Parameters of an LPAD

Given an LPAD with unknown values for the probabilities, we can learn these
probabilities using the following approach: (1) ground the LPAD; (2) reduce the
ground LPAD to a Bayesian net, as outlined above; (3) learn the CPDs of the
Bayesian net, taking into account constraints on these CPDs; (4) map these
CPDs onto the LPAD probabilities.

Our previous discussion leaves only step 3 to be discussed. First, note that the
Bayesian net contains unobserved variables: indeed, none of the Ci are observed
in the data. There are well-known procedures for parameter estimation in such
Bayesian nets, e.g., EM-MAP [2].

Second, we want the CPDs that are being learned to have a specific structure.
As explained before, the CPDs of the atom variables are fixed (they express a
logical “or”). In the CPDs of the choice variables Ci, only one row of values is
to be learned, the other rows contain 0 and 1. To learn these CPDs, it suffices to
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Table 2. Algorithm for transforming non-recursive CP-compliant LPADs into Bayesian
networks. By convention, hij refers to original atoms in this description, and h′

ij to
indexed atoms.

function BN(P : 1-compliant LPAD) returns a Bayesian net
N := ∅ // nodes of the BN
E := ∅ // edges of the BN
for each rule (h′

i1 : αi1 ∨ . . . ∨ h′

ini
: αini

← bi1, . . . , bimi
) ∈ P :

N := N ∪ {Ci} ∪
S

j{bij}

E := E ∪
S

j
{(bij , Ci)}

associate with Ci a CPD as follows:
P (Ci = j|all parents true) = αij , for all j > 0
P (Ci = 0|all parents true) = 1 −

P
j
αij

P (Ci = 0|not all parents true) = 1
P (Ci = j|not all parents true) = 0, for all j > 0

for each clause (hij ← h′

ij) ∈ P :
N := N ∪ {hij}
E := E ∪

S
j
{(Ci, hij)}

for each l ∈ N that is not a Ci:
associate with l a CPD as follows:

C :=
W

ij:(l←h′

ij
)∈P

Ci = j

P (l = true|C) = 1
P (l = false|C) = 0
P (l = true|¬C) = 0
P (l = false|¬C) = 1

return (N, E, CPD)

initialize the 0 and 1 elements with their right value: the Bayesian update rule
can only update values strictly between 0 and 1.

Finally, note that when grounding an LPAD, a single rule is typically trans-
formed in a set of rules, all with the same α parameters. These α’s occur in mul-
tiple places in the Bayesian net. When learning the parameters of the Bayesian
net, we need to take into account that all the parameters corresponding to one
α must have the same value. This can be done by forcing these parameters to
be their average after each iteration of the EM algorithm.

7.2 Learning Both Structure and Parameters of an LPAD

We consider the following task: given a set of predicates, learn an LPAD that
may contain any of these predicates. This involves a search over possible LPAD
structures, which can be done either in LPAD space or in Bayesian net (BN)
space. Typically, a greedy algorithm such as the ones below would be used:

LPAD := ∅ BN := initial Bayesian net
while LPAD is not good enough: while BN is not good enough:

S := refinements(LPAD) S := refinements(BN)
LPAD := argmaxL∈S eval(L) BN := argmaxL∈S eval(L)

return LPAD return LPAD(BN)
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In LPAD space, a refinement operator similar to Riguzzi’s [3] could be used
for the search, though alternatives can be explored. In BN space, since Bayesian
nets corresponding to LPADs are a subset of all possible Bayesian nets, one
needs to ensure that the Bayesian net returned maps to a valid LPAD. To this
aim, the refinement operator can be redefined so that only LPAD-compatible
Bayesian nets are generated.

The eval function is typically based on the likelihood of the data given the
candidate model. Computing this involves (in LPAD space) grounding the can-
didate LPAD and transforming it into a Bayesian network; then (in both cases)
estimating the parameters of the network and computing the likelihood.

Some experiments with a first implementation of the above described parame-
ter and structure learning approaches, which space restrictions prevent us from
detailing here, indicate that at least learning small LPADs such as the ones
shown in this paper is quite feasible, and suggest that the repeated conversion
of LPADs into Bayesian nets may make the LPAD search much slower than the
BN search. We plan a more detailed experimental comparison of the approaches
as future work.

8 Conclusions

The main contribution of this paper is the definition of a reduction of non-
recursive finite-universe LPADs to Bayesian networks. This reduction is defined
in two steps: in a first step, an LPAD is transformed into a so-called 1-compliant
LPAD. In a second step, the latter is transformed into a Bayesian network.

The reduction provides some novel insights regarding the meaning of the α
parameters in an LPAD. In particular, we have shown that while the probabilities
in LPADs cannot generally be interpreted as conditional probabilities within the
universe of atoms occurring in the LPAD, it is always possible to transform the
LPAD into another LPAD where this property does hold.

The reduction also offers several perspectives with respect to learning LPADs.
First, the only existing methods for learning LPADs, up till now, handled only
a restricted type of LPADs, so-called ME-compliant LPADs. Using the reduc-
tion proposed here, that restriction is lifted. Second, the reduction makes the
extensive expertise on learning Bayesian networks available for learning LPADs.

In future work we intend to have a closer look at the many existing methods
for learning Bayesian networks, and evaluate how suitable these approaches are
from the point of view of learning LPADs (i.e., how well they work in the presence
of constraints on the parameters that are being learned).

Our reduction still leaves open the question of how to learn recursive
LPADs. One approach may be based on translating the LPAD to an undirected
graphical model, removing the problem that cycles are not allowed. Another
approach would be to abandon the reductionist approach and develop an algo-
rithm specifically for learning LPADs. Both approaches will be investigated in
the future.
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Abstract. In this paper, we present a probabilistic method of dealing with multi-
class classification using Stochastic Logic Programs (SLPs), a Probabilistic In-
ductive Logic Programming (PILP) framework that integrates probability, logic
representation and learning. Multi-class prediction attempts to classify an ob-
served datum or example into its proper classification given that it has been tested
to have multiple predictions. We apply an SLP parameter estimation algorithm to
a previous study in the protein fold prediction area and a multi-class classification
working example, in which logic programs have been learned by Inductive Logic
Programming (ILP) and a large number of multiple predictions have been de-
tected. On the basis of several experiments, we demonstrate that PILP approaches
(eg. SLPs) have advantages for solving multi-class prediction problems with the
help of learned probabilities. In addition, we show that SLPs outperform ILP plus
majority class predictor in both predictive accuracy and result interpretability.

1 Introduction

Multi-class classification is a central problem in machine learning, as applications that
require a discrimination among several classes are ubiquitous [1]. We consider the prob-
lem of multi-class prediction/classification1 using Probabilistic Inductive Logic Pro-
gramming (PILP) approaches [2]. A conventional Inductive Logic Programming (ILP)
program is given with a training data set consisting of examples belonging to N � 2 dif-
ferent classes, and the goal is to construct a method that, given a new unlabeled datum,
will correctly predict the class to which the datum belongs2.

The motivation comes from an existing multiple prediction problem detected in a
previous protein fold prediction study [3], where a number of proteins can be predicted
to belong to more than one protein fold but in fact each of them should have only one
unique prediction. This is called the ‘False Positive’ problem in binary classification [4],
where in practice many examples show positive on more than one class which leads to

1 It is also called multiclass prediction, multiple classification or multi-classification in some
references.

2 We distinguish the case where each datum is required to belong to a single class from the other
case where a given example is allowed to be a member of more than one class simultaneously.
The former case of requirement is assumed in our framework, where multiple predictions have
been detected due to some reasons in practice and the goal is to solve the uncertainty from the
observations so that a single prediction could be made correctly for each datum.

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 109–124, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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ambiguous prediction results. Another example can be taken from the animal classifi-
cation program (Table 2), in which one can easily detect, using the given background
knowledge, that a bat is predicted to be a member of both mammal and bird classes,
and a dolphin is predicted to belong to both mammal and fish classes. Multi-class clas-
sification/prediction discussed in this paper aims to find ways to solve these multiple
prediction problems and make correct decisions, so that a protein has only one correct
fold prediction, and a bat and a dolphin can be predicted only in mammal class.

While binary classification [4,5], which classifies the members of a given set of
objects into two groups on the basis of whether they have some property or not, is
well understood, multi-class classification requires extra techneques. Most of the cur-
rent multi-class classification techniques are developed in the discriminative classifi-
cation methods, including decision trees, kernel methods, support vector machine and
neural networks. Some of them extend the binary classification algorithms to handle
multi-class problems directly, such as decision trees, regression, discriminant analysis,
etc [5,6]. The others build multi-class methods on the basic binary classification meth-
ods, such as one-versus-others, pairwise classification, all-versus-all, error-correcting
output coding, etc [1,4,7,8]. There has also been some work on the combination of
these methods with probabilistic modeling [8,9]. The above approaches have limited
relevance to ILP-based classifiers, as most of them are based on regularization, mod-
eling the decision boundaries or evaluating several binary classification methods. In
logic-based classification methods , such as ILP, majority voting is often used to solve
the multiple prediction problems, however the performance depends on the empirical
distribution and the (im)balance feature of data.

To solve the multiple prediction uncertainty that naturally exists in the ILP classifiers,
we use PILP techniques, which aim at integrating three underlying constituents: statis-
tical learning and probabilistic reasoning within logical or relational knowledge repre-
sentations [2]. There have been increasing number of attempts to use PILP methods in
practical settings recently [10,11]. In this paper, we present applications of Stochastic
Logic Programs (SLPs) [12], one of the existing PILP frameworks, to learn probabilis-
tic logic programs that help to solve the multi-class prediction problem detected in a
protein fold prediction study and a working example. We apply a comparative experi-
mental strategy to demonstrate our method in which SLPs are learned from the existing
ILP programs and training data, and then the results, including the predictive accuracy
and interpretability, are compared between SLP predictors against ILP plus majority
class predictors.

2 Motivation

2.1 Biological Motivation

Protein fold prediction is one of the major unsolved problems in modern molecular biol-
ogy. Given the amino acid sequence of a protein, the aim is to predict the corresponding
three-dimensional structure or local fold [13]. It has been proved that determining ac-
tual structure of a protein is hard. It is a good idea to predict the structure and machine
learning methods are useful. A major event in the area is the well-known Comparative
Assessment of protein Structure Prediction (CASP) competition and CAFASP2 [13].
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Table 1. Ratio of examples with multiple predictions in the previous study

all-� class all-� class ��� class � � � class overall
30/77=38.96% 34/116=29.31% 67/115=58.26% 23/73=31.51% 154/381=40.42%

A variety of machine learning approaches have been successful, such as decision trees
[7], support vector machines [4,7] and kernel methods [14,15], neural networks [4],
hidden Markov models [10,11], ILP [3,16,17], etc. ILP is useful as it can learn ex-
plainable logic rules from examples with the help of relational background knowledge.
Multi-class protein fold prediction has been investigated in [4,7,11].

An experimental study of applying ILP to automatically and systematically discover
the structural signatures of protein folds and functions has been explored in [3]. The
rules derived by ILP from observation and encoded principles are readily interpreted
in terms of concepts used by biology experts. For 20 populated folds in SCOP data-
base [18], 59 logical rules were found by ILP system Progol [19]. With the same ex-
periments, the effect of relational background knowledge on learning protein three-
dimensional fold signatures has also been addressed in [16]. However, there exists a
problem of multiple predictions unsolved in the previous study, ie. a number of protein
domains have been predicted to belong to more than one of 20 protein folds or can
be explained by rules across multiple folds. In fact, only one protein fold prediction is
expected for each protein. We have investigated that, in the previous study, about 40%
of the examples have been involved in the problem (Table 1). For example, the worst
case we have found is where protein domain ‘d1xyzb ’ is given to be in fold ‘���
(TIM)-barrel’, however it has been tested to have up to four fold predictions - ‘���
(TIM)-barrel’, ‘NAD(P)-binding Rossmann-fold domains’, ‘���-Hydrolases’ and
‘Periplasmic binding protein-like II’.

One of the main reasons for the false positive problem [4] is that the decision bound-
ary between ILP rules can be naturally overlapped due to the complex nature of protein
folding, the quality and noise of acquired background knowledge and data, etc. From
biology point of view, our study is motivated by finding ways to solve the multiple pre-
diction problem so that, deriving the ILP program and data from the previous study,
only one unique fold prediction can be discovered for each protein domain.

2.2 Machine Learning Motivation

From machine learning point of view, solving the above problem requires us to deal
with multi-class prediction rather than the binary classification approach3 used in the
original study. Generally speaking, binary classification can be used to predict whether
an example belong to a class or not, whereas multi-class prediction can classify an ex-
ample into one class from multiple ambiguous predictions based on some given ‘rank-
ing’ or ‘leveraging’ mechanism. Precisely, a binary predictor defines a function f that
maps an example e and a class label cl to a binary set, ie. f : (e� cl) �� �yes� no�; and

3 When there are multiple classes and the class labels are assumed to be independent, a con-
ventional ILP classifier actually provides a set of binary classifiers, each of which is used to
distinguish whether or not an example is in a certain class.
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Table 2. A working example: multi-class animal classification program

Prob. Logic rules Comments
0.195: class(mammal,A) :- has milk(A). %classification rules
0.205: class(mammal,A) :- animal running(A). %A is in ‘mammal’ class
0.222: class(bird,A) :- animal flying(A). %A is in ‘bird’ class
0.189: class(fish,A) :- has gills(A). %A is in ‘fish’ class
0.189: class(fish,A) :- habitat(A,water),has covering(A,none),has legs(A,0).
0.433: animal running(A) :- hemeothermic(A),habitat(A,land),

has legs(A,4).
% extensional back-
ground knowledge

0.567: animal running(A) :- hemeothermic(A),habitat(A,caves).
0.6: animal flying(A) :- hemeothermic(A),habitat(A,air),

has covering(A,feathers),has legs(A,2).
0.4: animal flying(A) :- hemeothermic(A),habitat(A,air),

has covering(A,hair),has legs(A,2).
animal(bat).has milk(bat).hemeothermic(bat).habitat(bat,air).
habitat(bat,caves).has covering(bat,hair).has legs(bat,2).

% intensional back-
ground knowledge

animal(dolphin).has milk(dolphin).hemeothermic(dolphin).
habitat(dolphin,water).has covering(dolphin,none).has legs(dolphin,0).� � � � � �
class(mammal,bat).class(mammal,dolphin).� � � � � � % data,examples

a multi-class predictor defines a function g that maps an example e and a set of class
labels �cl1� � � � � clm� to one class label cli � �cl1� � � � � clm� with some ranking mechanism
ri, ie. g : �(e� cl1)� � � � � (e� clm)� �� (e� cli� ri)�m � 1� 1 � i � m. Multi-class predictor
is more useful for unlabeled/unseen data classification. In majority voting, the ranking
mechanism is the class size, ie. the number of predicted examples of a class. In PILP
approaches, the class-conditional probabilities are computed for each example e as the
ranking mechanism, which specify a distribution of the prediction probabilities of e
over multiple classes.

The work is also motivated by the applications of PILP approaches. PILP extends
ILP to explicitly deal with uncertainty and has an advantage over ILP because it can
provide additional knowledge by building probabilistic models for the observations. We
apply SLPs, a well-known PILP framework, to the existing ILP programs that use bi-
nary classification. Probabilities will be machine learned by applying an SLP parameter
estimation algorithm based on the given ILP rules, (positive) examples and background
knowledge. By comparing the performance of multi-class prediction using SLPs against
non-probability approaches, eg. ILP plus majority voting, we aim to demonstrate some
showcases where PILP approaches outperform ILP methods in some applications.

2.3 A Working Example

An artificially generated working example is defined and processed in order to clarify
the problem of multi-class prediction and to demonstrate our method. It also shows that
multiple prediction problem may naturally happen in logic-based classifiers due to the
overlapping among logic clauses.

The so-called multi-class animal classification example starts from a logic program
illustrated in Table 2, which contains a set of logic rules learned using ILP and can be
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used to classify animals into three classes, ie. mammal, bird or fish. The program was
learned from an artificial data set with 10% of noise and 30% of multiple prediction
examples. An example of multiple predictions can be gained by testing that a bat be-
longs to both mammal and bird classes, or a dolphin is predicted to be in both mammal
and fish classes. An example of SLP is also listed in Table 2 in which probabilities are
estimated for some rules from data.

3 Background

3.1 Protein Fold Prediction

Protein structures can be described at various levels of abstraction [17]. The primary
structure refers to the sequence of amino acids. The secondary structure is local or-
dered structure brought about via hydrogen bonding and the most common secondary
structure elements in proteins are the �-helices and the �-strands, while the interven-
ing region are called loops or coils. The tertiary structure is the global folding of a
single polypeptide chain. A particular sequence of amino acids folds into a specific
compact three-dimensional or tertiary/quaternary structure from which the exact loca-
tion of every atom can be deduced. In this level of abstraction, protein folds are defined
to represent a high-level description of the three-dimensional structures found in amino
acid sequences and are our targets of discovery.

The “Holy Grail” of molecular biology is to devise a method that would predict
the three-dimensional structure from the knowledge of the sequence alone [16]. The
problem is often broken down into two sub-tasks: secondary structure prediction which
aims to map each residue to one of the three types (helix, strand and coil); and protein
fold classification whose aim is the docking of the secondary structure elements to form
the compact three-dimensional structure. We concentrate on protein fold prediction that
would predict protein folds from the knowledge of protein domains based on the famous
SCOP classification scheme [18]. The scheme is a classification done manually by the
experts on protein structure and facilitates the understanding of protein structure which
can be served as a starting point for machine learning experiments. Table 3 illustrates
the hierarchy of protein structures we are using. A domain is the building block of
the classification; a fold represents a classification for a group of protein domains. At
the top level, a class is used to group folds based on the overall distribution of their
secondary structure elements.

In our study, we have been using the above classification scheme to design the exper-
iments. The data are a set of (positive) examples in protein domain level associated with
known protein fold classification for training and test purpose. The background knowl-
edge are a set of domain knowledge for representing the structural and inter-relational
information of the domains. The learned ILP rules derived from the previous study
stand for the prediction knowledge discovered from the data with the help of back-
ground knowledge in protein fold level. The learned SLP probabilities associated with
rules and background knowledge represent the probabilistic distributions or statistical
frequencies of the protein fold predictions that can be used as the ranking mechanism
for solving multiple prediction problem.
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Table 3. protein structure classification scheme

Level Description Examples

CLASS folds are grouped into classes based on the all-�
overall distribution of their secondary structure elements. ���

FOLD proteins that share the same core secondary structures Globins
and the same interconnections. Cytokines

superfamily a group of families.
family a group of domains.

a structure or substructure that is considered to be d1scta
DOMAIN folded independently; small proteins have a single domain, d1xyzb

and for larger ones, a domain is a substructure.

3.2 Stochastic Logic Programs

Stochastic logic programs (SLPs) [12] have been chosen as the PILP framework in
the study as SLPs provide a natural way in associating probabilities with logical rules.
SLPs were introduced originally as a way of lifting stochastic grammars to the level of
first-order logic programs. SLPs were considered as a generalization of hidden Markov
models and stochastic context-free grammars. SLPs have later been used to define dis-
tributions for sampling within inductive logic programming (ILP). It is clear that SLPs
provide a way of probabilistic logic representations and make ILP become better at
inducing models that represent uncertainty.

Syntactically, an SLP S is a definite logic program, where each clause C is a first-
order range-restricted definite clause and some of the definite clauses are labelled/ pa-
rameterised with non-negative numbers, l : C. S is said to be a pure SLP if all clauses
have parameters, as opposed to an impure SLP if not all clauses have labels. The subset
S q of clauses in S whose head share the same predicate symbol q is called the definition
of q. For each definition S q, we use �q to denote the sum of the labels of the clauses
in S q. S is normalised if �q � 1 for each q and unnormalised otherwise. Till now, the
definition does not show SLPs represent probability distributions, as each label can be
any non-negative number and there is no constraints for the parameters of unnormalised
SLPs. For our interest, SLPs are restricted to define probability distributions over logic
clauses, where each l is set to be a number in the interval [0,1] and, for each S q, �q

must be at most 1. In this case, a normalised SLP is also called a complete SLP, as op-
posed to a incomplete SLP for unnormalised one. In a pure normalised/complete SLP,
each choice for a clause C has a parameter attached and the parameters sum to one, so
they can therefore be interpreted as probabilities. Pure normalised/complete SLPs are
defined such that each parameter l denotes the probability that C is the next clause used
in a derivation given that its head C� has the correct predicate symbol. Impure SLPs are
useful to define logic programs containing both probabilistic and deterministic rules, as
shown in this paper. Unnormalised SLPs can conveniently be used to represent other
existing probabilistic models, such as Bayesian nets.

Semantically, SLPs have been used to define probability distributions for sampling
within ILP [12]. Generally speacking, an SLP S has a distributional semantics [20],
that is one which assigns a probability distribution to the atoms of each predicate in the
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0.4: s(X) :- p(X), p(X).                            
0.6: s(X) :- q(X). 
0.3: p(a).      0.7: p(b).  
0.2: q(a).      0.8: q(b). (a)
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Fig. 1. (a)an example of SLP S (adapted from [21]); (b)a stochastic SLD-tree for S with goal
:-s(X), including 6 derivations in which 4 are refutations (end with �) and 2 are fail derivations;
(c)probability distributions defined in S for the two fail derivations x1 and x2, for the leftmost
refutation r1, and for the two atoms s(a) and s(b), respectively.

Herbrand base of the clauses in S . The probabilities are assigned to ground atoms in
terms of their proofs according to a stochastic SLD-resolution process which employs
a stochastic selection rule based on the values of the probability labels. Furthermore,
some quantitative results are shown in [21], in which an SLP S with parameter � � log l
together with a goal G defines up to three related distributions in the stochastic SLD-
tree of G: 	��S �G(x), f��S �G(r) and p��S �G(y), defined over derivations �x�, refutations �r�
and atoms �y�, respectively. An example is illustrated in Fig. 1, in which the example
SLP S defines a distribution �0�1875� 0�8125� over the sample space �s(a)� s(b)�. It is
important to understand that SLPs do not define distributions over possible worlds, i.e.,
p��S �G(y) defines a distribution over atoms, not over the truth values of atoms.

There are two tasks for learning SLPs. Parameter estimation aims to learn the para-
meters from observations assuming that the underlying logic program is fixed. Failure-
Adjusted Maximization (FAM) [21] is a parameter estimation algorithm for pure
normalised SLPs. Structure learning tries to learn both logic program and parameters
from data. Although some fundamental work have been done for SLP structure learn-
ing [20,22], it is still an open hard problem in the area which requires one to solve
almost all the existing difficulties in ILP learning. In this paper, we apply the two-
phase SLP learning method developed in [20] to solve multi-class protein fold predi-
cation problem, in which SLP structure has been learned by some ILP learning system
and SLP parameters will then be estimated by playing with FAM to the learned ILP
program.

4 Multi-class Prediction Using SLPs

Our method of multi-class prediction using SLPs is illustrated as an algorithm in Ta-
ble 4. As shown in Table 2, an SLP for multi-class prediction is an impure SLP that
has a hierarchical structure, consisting of a set of probabilistic classification/prediction
rules, a set of probabilistic clauses for extensional background knowledge, and a set
of non-probabilistic clauses for intensional background knowledge. Probabilities are
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Table 4. The algorithm of multi-class prediction using SLPs

1. Initialize matrix MILP and MSLP to be zero matrix;
2. Apply n-fold cross validation or leave-one-out test to the data set that are thus divided

into n (training,test) subsets; for each subset repeat
2.1. Learn SLP from training data by playing FAM algorithm, which associates proba-

bilities to the probabilistic rules;
2.2. for each class cl count the number of predicted examples in the training set d(cl);
2.3. for each labeled example (e� cli) in the test set do

2.3.1. if e has only one prediction cl j then set MILP
i j � � and MSLP

i j � �; else
2.3.2. in all possible class predictions, apply majority class voting to choose cl j that

has the maximum value of d(cl); (in the case when equivalent values happen,
cl j is randomly chosen from the set)

2.3.3. for each possible class prediction cl, apply the learned SLP to compute the pre-
diction probability of e in cl, p(e � cl� �� S );

2.3.4. choose clk that has the maximum value of p(e � clk� ��S );
2.3.5. set MILP

i j � � and MSLP
ik � �;

3. Compute predictive accuracies paILP and paSLP bases on MILP and MSLP;
4. Learn the final SLP from the whole data set.

parameter-estimated by FAM algorithm (step 2.1). FAM is designed to deal with SLP
parameter learning from incomplete or ambiguous data in which the atoms in the data
have more than one refutation that can yield them. It is an adjustment to the standard EM
algorithm where the adjustment is explicitly expressed in terms of failure derivation.
The key step in the algorithm is the computation of 	�h [
i�y], the expected frequency
for clause Ci given the observed data y and the current parameter estimate �h

	�h [
i�y] �
t�1�

k�1

Nk	�h [
i�yk] � N(Z�1
�h � 1)	�h[
i� f ail]�

where 
i counts times Ci appeared in some derivation, Nk is the number of times datum
yk occurred in the observed data, N �

�
k Nk is the number of observed data, 	�h [
i�yk]

is the expected number of times Ci was used in refutations yielding yk, 	�h [
i� f ail]
denotes the expected contribution of Ci to failed derivations, and Z�h is the probability
of success. Therefore, the first part corresponds to refutations while the second term to
failed derivations. Broadly speaking, the equation gathers together the contributions of
a particular clause Ci to derivations against the program, the current parameters and the
data. FAM can be used to estimate the parameters for normalized impure SLP in which
some rules are set to be probabilistic and others are pure logical rules.

Given an example e and a set of predictions �cl1� � � � � clN� for e, a FAM-learned SLP
defines a distribution over the predictions, ie. �p(e � cl1� �� S )� � � � � p(e � clN � �� S )�. Each
p(e � cln� �� S ) denotes a class-conditional prediction probability of e in class cln and
can be computed (step 2.3.3) as

p(e � cln� �� S ) � p��S �:�class(cln�e)(class(cln� e)) �

�Mn
i�1

�Mi
j�1 l

� j(ri)
j�N

k�1 p(e � clk� �� S )
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class(mammal,bat)

has milk(bat)
0.195 �

animal running(bat)0.205
hemeothermic(bat),habitat(bat,land),has legs(bat,4)

0.433 FAIL

hemeothermic(bat),habitat(bat,caves)
0.567 �

class(bird,bat) animal flying(bat)
0.222

hemeothermic(bat),habitat(bat,air),has covering(bat,feathers),has legs(bat,2)
0.6 FAIL

hemeothermic(bat),habitat(bat,air),has covering(bat,hair),has legs(bat,2)

0.4 �

Fig. 2. Stochastic SLD-trees for goals class(mammal,bat) and class(bird,bat)

in its stochastic SLD-tree given S and goal :-class(cln� e), where ri is the i-th refu-
tation that satisfies e, Mn denotes the total number of refutations of e in cln, l j is
the probability of clause C j, 
 j(ri) is the number of times C j has been used in ri,
and Mi denotes the number of clauses occurred in ri. Because impure SLPs are al-
lowed, some clauses are unparameterised in a derivation. We apply the ‘equivalence
class’ feature developed in [21] to deal with the case where an unparameterised clause,
with probability 1, either succeeds or fails in a derivation (exclusively). Two stochas-
tic SLD-trees for the animal classification working example are illustrated in Fig. 2,
from which we have p(bat � mammal� �� S ) � 0�195�0�205�0�567

0�3112�0�0888 � 0�778 and p(bat �

bird� �� S ) �
0�222�0�4

0�3112�0�0888 � 0�222 given the SLP presented in Table 2. They thus
define a distribution over {class(mammal,bat),class(bird,bat)}, the two predictions
of bat.

In the algorithm, two multi-class confusion matrixes are built in a n-fold cross val-
idation or leave-one-out test in order to evaluate the corresponding predictive accura-
cies. We informally define a multi-class confusion matrix to be an integer square matrix
M(m�1)�(m�1) for m known classes4, in which an arbitrary element Mi j� 1 � i� j � (m�1),
will be increased by 1 if a labeled example taken from class cli is predicted to be
in class cl j (or in class clm�1 if no prediction). The overall predictive accuracy based

on the multi-class confusion matrix can then be computed by pa �

�m�1
i�1 Mii

�m�1
i� j�1 Mi j

(step 3).

Two matrixes with the predictive accuracies for the working example are shown as
follows

MILP
4�4 �

�
��������������

16 0 2 0
2 10 0 0
2 0 17 1
0 0 0 0

�
��������������

� paILP
� 86 � 4�9%; MSLP

4�4 �

�
��������������

18 0 0 0
2 10 0 0
2 0 17 1
0 0 0 0

�
��������������

� paSLP
� 90 � 4�2%�

4 The (m � 1)-th column is set to be an ‘unknown’ class, where an example in some cases fails
to be predicted in any of m known classes.
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Table 5. List of some predicates of background knowledge

Predicates Description

extensional relational background knowledge, there are two clauses for each predicate
adjacent(Dom,
S1,S2,Loop,
TypeS1,TypeS2)

it returns true if the length of the loop separating two secondary structures
S1 of TypeS1 and S2 of TypeS2 is Loop; otherwise, S1 and S2 are bound
to two consecutive secondary structure elements.

coil(S1,S2,Len) bound Len to the length of the loop between secondary structure S1 and
S2 or is true if the length of the loop is Len � 50%.

extensional global background knowledge, there are two clauses for each predicate
len interval
(Lo��Dom��Hi)

is true if the length of the domain Dom is in [Lo,Hi]; otherwise, Lo (Hi) is
bound to the length of the smallest (longest) positive example.

nb alpha interval
(Lo��Dom��Hi)

similar to len interval but process the number of alpha helices.

nb beta interval
(Lo��Dom��Hi)

similar to len interval but process the number of beta helices.

intensional local background knowledge, there is one clause for each predicate
unit len(S,Cst) is true if the length of the secondary structure S is Cst, the values for Cst

are very lo, lo, hi and very hi.
unit aveh(S,Cst) similar to unit len but process the average hydrophobicity.
unit hmom(S,Cst) similar to unit len but process the hydrophobic moment.
has pro(S) is true if S contains a proline amino acid.

5 Experiments

A set of scientific experiments5 are designed to demonstrate and evaluate our methods.

5.1 Hypotheses to Be Tested

The null hypotheses to be empirically investigated in the study are as follows,

– PILP approaches based on highly expressive probabilistic logic learning frame-
works, eg. SLPs, do not outperform any conventional ILP methods on the multi-
class prediction showcase.

– For a given logic program with multiple predictions/classifications and a corre-
sponding data set, provision of probabilities does not increase predictive accuracy
compared with non-probabilistic approaches such as majority class predictor.

– Probabilistic knowledge learned by PILP approaches does not produce improved
explanatory insight.

5.2 Materials and Inputs

In terms of ILP, the input materials consist of an ILP logic program that has multiple
prediction problem and a corresponding data set. An example can be found in Table 2

5 Details of the experiments can be found at
http://www.doc.ic.ac.uk/˜cjz/research

http://www.doc.ic.ac.uk/~cjz/research
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Table 6. Description of the experiments

Experiment Data set and description
1 protein fold prediction, 59 learned ILP rules and 381 protein domains; learning SLP

from uniform initial parameters, ie. each parameterised clause with definition S q is
initially set to have a probability 1

�S q �

2 protein fold prediction, 59 learned ILP rules and 381 protein domains; learning SLP
from random initial parameters

3 animal classification, 18 examples of mammal class, 12 of bird class and 20 of fish
class; predicted class size in order: mammal � fish � bird

4 animal classification, 17 examples of mammal class, 17 of bird class and 16 of fish
class; predicted class size in order: bird � mammal � fish

5 animal classification, 14 examples of mammal class, 18 of bird class and 18 of fish
class; predicted class size in order: bird � fish � mammal

Table 7. Comparison of predictive accuracies for experiment 1 (overall and by four protein
classes), 3, 4 and 5

Experiment 1 (overall) 3 4 5
SLP predictor 71.39�2.32% 90�4.24% 90�4.24% 90�4.24%
majority class predictor 64.57�2.45% 86�4.91% 84�5.18% 68�6.60%
Significance of Difference 0.021 0.269 0.185 0.003

Experiment 1 by protein class all-� class all-� class ��� class � � � class
SLP predictor 76.62�4.82% 81.03�3.64% 51.30�4.66% 82.19�4.48%
majority class predictor 71.43�5.15% 69.83�4.26% 44.35�4.63% 80.82�4.61%

for the multi-class animal classification and 50 artificial examples are provided. In pro-
tein fold prediction, a data set of 381 protein domains together with known protein
folds, based on SCOP classification, is provided in Prolog format, for example,

fold(’Globin-like’,d1scta ). fold(’beta/alpha (TIM)-barrel’, d1xyzb ).

Background knowledge are used to represent the three-dimensional structure informa-
tion of the examples, eg.

dom t(d1scta ). len(d1scta , 150). nb alpha(d1scta ,6). nb beta(d1scta ,0).

Three types of domain background knowledge are further distinguished (Table 5) – re-
lational knowledge introduce relationships between secondary structure elements and
their properties; global knowledge encode global characteristics of protein folds, specif-
ically, the number of residues and the number of secondary structures; and local knowl-
edge state local information of a single protein element. Some predicates are designed to
be intensional, while others are extensional that are generated from intensional knowl-
edge. In addition, 59 prediction rules learned by ILP system Progol [19] over 20 popu-
lated protein folds have been derived from the original study, eg.

fold(’Globin-like’,A) :- adjacent(A,B,C,1,h,h), has pro(C).
fold(’beta/alpha (TIM)-barrel’,A) :- adjacent(A,B,C,4,h,e), unit len(B,hi).
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5.3 Methods and Results

The method presented in Table 4 has been applied to both multi-class protein fold pre-
diction with a 5-fold cross validation test and multi-class animal classification working
example with a leave-one-out test. In order to empirically test the pre-set hypotheses,
five sub-experiments (Table 6) are designed and evaluated, each of which has an SLP
predictor as well as a majority class predictor. The first two experiments are used to test
the convergence property of FAM, while the other three are designed to investigate the
influence of empirical data distribution on the performance of the two predictors. Main
results of the predictive accuracy for the experiments are shown in Table 7. In sum-
mary, SLP predictors outperform majority class predictors in predictive accuracy in all
five experiments. The result of protein fold prediction experiment 1 shows a promising
improvement in the overall predictive accuracy that is 71�39% achieved by SLP pre-
dictor against 64�57% by non-probabilistic majority class predictor, and the difference
of the predictive accuracies (ie. the probability of the second null hypothesis in sec-
tion 5.1) is significant at the 0�021 level. Experiment 3, 4 and 5 imply that the majority
class predictors are dependent on the predicted class size of each class, ie. the number
of examples predicted in that class, which is further dependent on the empirical data
distribution, ie. the ratio of the number of examples provided in the training data set
(Table 6). We can see that the predicted class size of mammal class plays a key role
on the predictive accuracy, eg. the accuracy is 86% when it has the largest class size in
experiment 3, whereas the accuracy decreases to 68% in the worst case when it has the
smallest class size in experiment 5.

5.4 Interpretability

Probabilities not only increase predictive accuracy but also improve the interpretability
of the learned programs. These are demonstrated by interpreting Fig. 3 as follows, in
which the probabilities are learned from the whole data set for all five experiments.

Fig. 3(a) – The probabilities demonstrate the ranking or importance information of
the prediction rules in each protein fold; the values exactly match the power rules se-
lected in [3] that was determined by recall, however different recall thresholds have
to be manually set for different folds, whereas the probabilities can be automatically
learned; by comparing the results between experiment 1 and 2, which are shown in the
two legends, we claim that the initial parameter settings have no effect on the learning
results, ie. the FAM algorithm converges with any normalised initial parameters.

Fig. 3(b) – The fold probabilities, that are computed by summing up corresponding
rule probabilities and shown in the first legend, indicate the popularity of different pro-
tein folds, which has been agreed by the biologists (the second and fourth authors of the
paper); they tend towards empirical data distribution that is shown in the other legend.

Fig. 3(c) – Probabilities have been learned for the extensional background knowl-
edge (Table 5), each of which has two clauses shown in two legends; it is one of the
advantages of PILP to learn the probabilities for extensional background knowledge in
addition to those for the prediction rules that might be simply estimated from or tend to
converge to the empirical data distribution; these probabilities play the key roles in the
computation of prediction probabilities for examples (section 4).
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Fig. 3. Probability interpretability

Fig. 3(d) – The probabilities shown are summed up from all 59 probabilistic rules
by counting the frequencies of use of particular extensional background knowledge:
relational 	 global 	 local; it is clear to find that relational knowledge are far more
frequently used and occurred than the other two; the finding reenforces the conclu-
sions in [3] - different predicates play different roles in defining protein fold signatures,
but the predicate coil() has been found to have a higher frequency of use as relational
knowledge in our study than that in [3], where it was treated as global knowledge.

Fig. 3(e) – The probabilities of probabilistic clauses in the animal working example
(Fig. 2) are illustrated by the three legends for experiments 3, 4 and 5, respectively; the
values are slightly changed by providing data sets with different empirical distributions,
which result in the SLP predictors having the same predictive accuracy in the three
experiments (Table 7); in contrast, the predictive accuracies of majority class predictors
are dependent on the empirical data distribution and the predicted class sizes.
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6 Discussion and Conclusions

Impure SLPs play a key role in our study, which allow us to model both probabilistic
and deterministic knowledge in the probabilistic logic programs. The ability to combine
non-probabilistic domain knowledge with probabilities is a central feature of SLPs [21].
In addition, the hierarchical structure of the SLPs improves the interpretability, and the
ability of learning probabilities for extensional background knowledge from determin-
istic intensional background knowledge and ground examples provides SLPs a good
representation for solving multi-class prediction problem. On the other hand, efficiency
is a main problem existed in the current FAM algorithm, especially for large SLPs. It
needs at least seven CPU days for experiment 1 to run five iterations at a Linux server!
Some possible ways of using tabulation or sampling to increase efficiency have been
discussed in [21].

From machine learning point of view, it is useful to compare the following two terms
used in ILP method [3] with the probability used in SLPs. The measure of compression
was used to seek the specific rules in ILP, but the probability is used to measure the
importance of ILP rules with the same definition. While recall was used to measure
the predictive accuracy and to generate the power rules in the original binary classifica-
tion method, the probability is used to solve multi-class prediction problem. However,
ILP can deal with both positive and negative examples, SLPs are learned from positive
examples only.

Our method of multi-class prediction using SLPs has significant advantages com-
pared with some existing multi-class classification methods. Firstly, SLPs outperform
majority voting in the way that probability has less dependency on the empirical data
distribution. Secondly, sample probabilities are learned from data to tackle the uncer-
tainty of multiple predictions naturally existing in logic programs, which are more
natural and sound than decision trees [5] and the sequential model [6]. Thirdly, our
method does not need to combine or utilize multiple binary classifiers as presented
in [4,7,8,9]. Finally, SLPs use probabilities to model the decision boundaries among
classes, whereas support vector machine and their reduction methods [4,7] use regular-
ization and discriminative methods to evaluate several binary classification methods for
stochastic voting and usually result in reduced accuracy and efficiency.

The same protein folding data set or similar sets have been applied as a benchmark
by some other machine learning methods. Improved logic rules have been learned using
ILP in [17], in which the multiple predictions have been effectively reduced by rear-
ranging background knowledge. Logical hidden Mardov models, another PILP frame-
work, are applied in [11] to deal with multi-class protein fold prediction by represent-
ing the secondary structure of protein domains as logical sequences; the work increases
predictive efficiency and accuracy by reducing the problem representation complexity.
Conditional random fields [10] provide another PILP approach to deal with multi-class
protein fold classification using logical sequence method. A novel kernel method on
Prolog proof trees for binary protein fold prediction has been studied in [15] which pro-
vides higher overall accuracy compared with Progol. Even with the same data set, it is
not straightforward to compete the results gained by these methods with those shown in
this paper due to our specific research motivation and target, which aims to solve multi-
class prediction problem by learning SLPs on the basis of the existing ILP programs
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and data, while the other methods apply their own binary or multi-class classification
solutions to the data without deriving the ILP programs. As our future work, resolving
rule conflicts with double induction [23] and using Area Under the Curve (AUC) [24]
rather than predictive accuracy for performance evaluation will be considered.

In conclusion, the null hypotheses we have set in experiments were rejected on
the basis of the results. Overall we conclude that PILP approaches (eg. SLPs) have
demonstrable advantages for solving multi-class prediction problem and SLPs have
outperformed ILP plus majority class predictor in both predictive accuracy and result
interpretability.
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Abstract. The discovery of relationships between concepts is a cru-
cial point in ontology learning (OL). In most cases, OL is achieved
from a collection of domain-specific texts, describing the concepts of
the domain and their relationships. A natural way to represent the de-
scription associated to a particular text is to use a structured term (or
tree). We present a method for learning transformation rules, rewrit-
ing natural language texts into trees, where the input examples are
couples (text, tree). The learning process produces an ordered set of
rules such that, applying these rules to a text gives the corresponding
tree.

1 Introduction

The work presented in this paper has been motivated by a French project (ACI
Biotim http://www-rocq.inria.fr/imedia/biotim/) in the field of Biodiversity.
The task we address aims at semi-automatically building an ontology of the
domain from corpora describing flora.

The term ontology has various definitions in various domains. From a practi-
cal point of view, an ontology can be defined as a quadruple O = (C, R, A, T op)
where C is a set of concepts, R is a set of relations, A is a set of axioms and Top is
the highest-level concept [SB03]. The set R contains relations between concepts,
as for example, the binary relation partof relating the concepts hand and hu-
man. Usually we distinguish taxonomic and non-taxonomic relations: taxonomic
relations are used to organize information with generalization/specialization (or
hyponymy) relationships in a “ISA hierarchy”; non-taxonomic relations are any
other relations such as synonymy, meronymy, antonymy, attribute-of, possession,
causality, ...

Ontology learning refers to extracting one of these elements from input data.
This task has been addressed in several research areas. Ontology learning sys-
tems extract their knowledge from different types of sources, such as structured
data (databases, existing ontologies, ...) or semi-structured data (dictionaries,
XML documents, ...). One of the problems is to learn from unstructured data
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(domain-specific natural language texts). A quite natural formalism for struc-
turing texts is first-order logics (usually logic programs), thus allowing the use of
Inductive Logic Programming for different tasks, as for instance Text Categoriza-
tion, Information Extraction or Parser Acquisition [Coh95, JSR99, Moo96]. This
usually leads to a two-step process: a syntactic analysis of the texts, followed by
the learning task. Nevertheless, in our application, the corpora is specific (long
descriptions of flore without verbs) making difficult the use of classical syntactic
parsers. For instance, the following example is the beginning of the description
of the plant called “Pulchranthus variegatus”:

“ Subshrubs or shrubs, 0.5-2 m tall. Stems terete with red, exfoliating bark.
Leaves: petioles 3-13 mm long; blades elliptic-lanceolate, 13-26 × 5-9 cm,
glabrous, the apex acuminate-cuspidate. Inflorescences terminal, racemes or
panicles, 4-15 cm long, green, the flowers 2-many per node; peduncle 10-15
mm long; bracts small, narrowly triangular, 2.5-3 x 0.5 mm; pedicels lacking
to short, 1.5 mm long; bracteoles 1.5-2 mm long. ...”

This text describes different concepts (stem, bark, leaf, ...) and various relations:
part-of relations (bark is a part of a stem, flower is a part of inflorescences, ...) and
attribute-value relations (stem is terete, bark is red, petiole is 3-13 mm long...).

All this information can be represented into a tree (term), the leaves (con-
stants) are elements of the text. For example, the term

partOf(desc(stem, terete), desc(bark, [red, exfoliating]))

could be a representation of information associated with the sentence “Stems
terete with red, exfoliating bark”. The detailed formal language used in our work
is presented in Section 3.

Given a set of sentences and their corresponding terms (manually built), our
goal is to produce a set of rules able to rewrite a sentence into a term. The
corpora shows that in many cases, some simple regular structures can be auto-
matically discovered, these structures are based on the punctuation and the syn-
tactical categories of words. For example, when a noun is immediately followed
by an adjective, then the adjective describes the noun; when two descriptions
are separated by “,” or “, with”, then the second description is about a concept
which is a part of the concept of the first description. This short example also
shows that a preprocessing step is required: the initial text is transformed into
a list of elements (words, punctuation), each element is tagged, using a part-
of-speech (POS) tagger; this preprocessing is done in most existing ontology
learners.

Some works have already adressed this task: [MPS02] proposes a survey of
methods relying either on statistics or predefined patterns, [SM06] is based on
cooccurrences with verb phrases, [Yam01] uses a n-grams representation and
[Ait02] uses ILP techniques to characterize specific relations. [Bri93] proposes a
transformation-based approach for parsing text into binary trees.
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Our approach can be compared with [Hea92] which proposes to use a pattern-
based approach to extract hyponymy/hyperonymy relations from texts. [Hea92]
proposes to use patterns like for instance :

NP0 such as {NP1, NP2..., (and/or)} NPn

to infer that hyponymy(NP0, NPi) for i = 1..n. In Hasti [SB04], patterns are
also used for building ontology. In these works, the user has to define the pat-
terns. The particularity of our approach is that we propose to learn such rules
automatically, from a set of examples. In [Bos00], transfer rules are learned in
a bi-lingual translation perspective: rules are produced from pairs of structured
terms. These rules are mainly based on the structure of both terms, i.e. on the
non-terminal symbols occurring in each term. In our approach, rules are learned
from pairs (sentence, term) where the sentence is a list of (tagged) words, i.e. a
term which is not sufficiently structured to apply the approach of [Bos00].

For this reason, our method can be applied to any type of relation. The learn-
ing process presented in this paper is simple: it is an iterative method, from the
inner structure to the outer structure, building new examples for each iteration.
We propose a divide and conquer approach guided by the structure and based on
a least general generalization principle, applied independently on different parts
of couples (sentence, term). In that sense, this work is a preliminary one, and
we plane to explore deeply the search space, taking into account the sequential
aspect of the data. From an ILP perspective, this point is a challenging problem.

2 Introductive Example

To introduce the learning problem, let us consider the three following sentences:

s1: “Stems terete to quadrangular, with swollen nodes”
s2: “Bracts imbricate, the margins toothed”
s3: “Corolla curved, the lobes subequal to dimorphic”

We propose to associate to each sentence a term (or tree), representing in-
formation which can help to build an ontology. For example, the first sentence
presents two concepts (stem and node), where node is a part of stem; these
concepts are described by:

- stems are terete to quadrangular,thus introducing a range of values
- nodes are swollen

In order to represent this information, we can associate to the sentence s1 the
following term:

term1: partOf(desc(stem, range(terete, quadrangular)), desc(swollen, node))

In the same way, we can produce term2 and term3 from sentences s2 and s3.
We have chosen here very similar examples to introduce the learning process and
so the corresponding terms are very similar. These terms are represented by the
following trees:
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desc

stem range swollen node bract imbricate margin toothed corolla curved lobe range

desc desc desc

partOfpartOf

terete quadrangular subequal dimorphic

descdesc

partOf

term2 term3term1

Our goal is to build rules such that, applying them on a sentence builds the
corresponding term. The rewriting process is based on the grammatical cate-
gories of elements in sentences, so we need a mapping from the set of elements
in a sentence to a set of possible tags. We use TreeTagger [Tre] to perform this
mapping and the possible tags are those proposed by TreeTagger : nn (noun,
common singular), jj (adjective, general), vvn (verb, past participle), ..., a de-
tailed list is proposed in [Tre]. We have added the tag pct for punctuation.

Then a sentence can be viewed as a list of terms; the previous examples s1,
s2 and s3 are respectively represented by the lists list1, list2 and list3:

list1: [ nn(stem),jj(terete),to(to),jj(quadrangular),pct(virg),in(with),
jj(swollen),nn(node)]

list2: [ nn(bract),jj(imbricate),pct(virg),dt(the),nn(margin),vvn(toothed)]
list3: [ nn(corolla),vvn(curved),pct(virg),dt(the),nn(lobe),jj(subequal),

to(to),jj(dimorphic)]

The goal is then to learn rules, rewriting such lists into the corresponding
terms. The input of the process is a set of couples (listi, termi), and we propose
to learn these rules by a generalization process. However, the terms are usu-
ally too much different to be generalized. For this reason, we consider all their
sub-terms with their corresponding subtrees in the generalization process: this
requires to be able to extract the sub-list associated to a sub-term, this point is
detailed in Section 3.2.

In our example, we can get for instance the two following couples (sub-list,
sub-term):

([jj(terete),to(to),jj(quadrangular) ], range(terete, quadrangular))
and

([jj(subequal),to(to),jj(dimorphic) ], range(subequal, dimorphic))
which can be generalized into

([jj(X),to(to),jj(Y) ], range(X, Y)) (rule 1)

The last couple can be considered as a rule, producing a term from a list of
terms (we propose in the following section a detailed definition of rewriting
rules). Then, applying such a rule to a list of terms consists in replacing a part
of the list matching the left-hand side of the rule by the corresponding right-hand
side.
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Such a rule will have to be applied to lists of terms such as list1. So, it will be
necessary to decompose such a list into 3 lists l1, l

′ and l2 such that l′ matches
with the left-hand list of the rule and then, l′ is replaced by the right-hand term
of the rule. For the example list1, a possible decomposition is

l1 = [ nn(stem)],
l′ = [jj(terete),to(to),jj(quadrangular) ]
l2 = [ pct(virg),in(with), jj(swollen),nn(node)]

and applying the rule 1 to list1 gives the list:

list′1: [ nn(stem),range(terete, quadrangular),pct(virg),in(with),
jj(swollen),nn(node)]

In the next section, we introduce special symbols �i instead of variables
X, Y, . . .. Then, the right-hand term of the rule 1 will be written range(�1, �2)
and we will have to extract the a sub-list from l′ (in our example [terete,
quadrangular]) such that symbols �1 and �2 are replaced by the terms be-
longing to this sub-list.

We can notice that, applying the previous rule to any list from the initial lists
list1, list2 or list3, produces only expected sub-terms. Conversely, the rule

([nn(X),jj(Y) ], desc(X, Y))

could also be considered but it produces some unexpected terms since it can be
applied to the sub-list [ nn(stem),jj(terete) ] of the sentence s1, producing the
term desc(stem, terete) which is not a sub-term of term1. For this reason, this
rule is not acceptable at this level (in this paper, we require that rules are 100%
correct).

Once an acceptable rule is produced, we propose to apply it to all the sub-
lists of the positive examples: if we apply the previous rule to the couple (list1,
term1), we obtain the couple

([ nn(stem),range(terete,quadrangular),pct(virg),in(with),jj(swollen),
nn(node)], term1)

Then we get a new set of positive examples and we propose to continue this
process until either all the couples have the form ([term], term) or no more rule
can be learned. In our example, we can expect that, after learning and applying
some rules, list1, list2 and list3 will be rewritten respectively into

list′1: [ desc(stem,range(terete,quadrangular)),
pct(virg),in(with), desc(swollen,node)]

list′2: [ desc(bract,imbricate),
pct(virg),dt(the), desc(margin,toothed)]

list′3: [ desc(corolla,curved),
pct(virg),dt(the), desc(lobe, range(subequal, dimorphic))]

These terms are similar in their structure but in order to generalize the examples
(list′1, term1), (list′2, term2), (list′3, term3), we have to introduce a more general
form of rewriting rules, generalizing the three previous examples allowing either
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“the” or “with” between two descriptions in a rule producing a partOf term.
These problems also arise with the following example:

([ nn(bract),jj(imbricate)], desc(bract, imbricate))

and

([ nn(margin),vvn(toothed)], desc(margin, toothed))

where two different tags are possible for the second word.
This process is formally detailed in the following sections.

3 Definitions and Languages Specification

As mentioned in the previous section, the examples used by the learning method
are couples (list, term) where list is a list of term. In this section we introduce
some definitions and we present the language specifications used in our applica-
tion, for both terms in the initial lists of terms and terms representing intended
information to extract.

3.1 Terms and Lists

We first recall some definitions and notations for terms and lists, see [CDG+97]
for more details.

A regular tree language is defined by a ranked alphabet (F , arity) where F
is a finite set of symbols and arity a function from F to IN, which indicates the
arity of a symbol. Given a set of variables X , terms are inductively defined by:
a symbol of arity 0 is a term, a variable of X is a term, if f is a symbol of arity
n and t1, ..., tn are terms, then f(t1, ..., tn) is a term. For any i ∈ [1..n], ti is
a sub-term of f(t1, ..., tn) and any sub-term of ti is a sub-term of f(t1, ..., tn).
Given a term t = f(t1, ..., tn), we define top(t) = f .

A context is a term C[�] containing a special variable � which occurs just once
in that term, it marks an empty place. Throughout, the substitution of � by a
term u is written C[u].

Lists are usually terms build with a 2-ary symbol (cons) and a 0-ary symbol
(ε). In this paper, lists of terms are written with square brackets in order to
distinguish terms from lists of terms.

Given n terms t1, ..., tn, the list containing t1, ..., tn is denoted by [t1, ..., tn],
n is the size of l. Let l be the list [t1, ..., tn], l(i) denotes the i-th term ti. The
concatenation of two lists l1 = [a1, ..., an] and l2 = [b1, ..., bp] is written l1.l2 =
[a1, ..., an, b1, ...bp].

3.2 Definitions and Notations

Let l be the list [t1, ..., tn], a sub-list of l is a list [l(i1), ..., l(ik)] with i1 < i2 <
... < ik. We write Sk(l) the set of sub-lists of l with size k, and S∗(l) the set of
sub-lists of l of any size.
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Given a list l = [t1, ..., tn], the list l′ is a part of the list l if l can be written
as a concatenation l = l1.l

′.l2 (l1 and l2 are lists possibly empty). In this case, l′

is a sub-list of l that can be written l′ = [l(i), l(i + 1), ..., l(i + k)].

� Definition : k-context. A k-context is a term C[[�1, ..., �k]] containing k
special variables �1, ..., �k which occur just once in that term, each one marks
an empty place. Given a list of terms l = [t1, ..., tk], the substitution of each �i

by the term ti is written C[l] = C[[t1, ..., tk]]. The special variable �i appears to
the right-hand side of �j iff i > j

Given a couple (l, t) (l is a list of terms and t is a term), the role of a k-context
is to express that the term t can be obtained from a k-context C[[�1, ..., �k]] and
a sub-list lk ∈ Sk(l) such that t = C[lk]. To learn rewriting rules, we have to
find k-contexts that are common to different couples.

For instance, let us consider a couple (l, t) with l=[a, b, c, d] and t = f(b, h(d)).
If we consider the 2-context C[[�1, �2]] = f(�1, h(�2)), we can extract the sub-list
l′ = [b, d] from l such that t = C[l′]. Let us notice that another possible context
is for instance the 1-context C′[[�1]] = f(b, h(�1)) with the sub-list l′′ = [d], such
that t = C′[l′′].

Since for a couple (l, t) t is a possible 0-context, we propose a more restrictive
definition:

� Definition : k-skeleton. A k-skeleton is a k-context skk = C[[�1, ..., �k]]
such that there are no other 0-ary symbols in skk than the �i. A term t is a
skeleton if there exists k such that t is a k-skeleton (such a value k is unique).

For example, f(a, g(�1, �2)) is a 2-context but is not a 2-skeleton. On the other
hand, f(�1, g(�2, �3)) is a 3-skeleton.

In the following, rewriting rules are obtained from skeletons. This choice has
been made in order to ensure that the information associated to term are all
contained in the initial sentence. In a more general process, we could consider
k-contexts to learn rewriting rules.

� Definition : consistency. A couple (l, t) (l is a list of terms and t is a
term) is said to be consistent if there exists a unique couple (sk, sl) such that sk
is a skeleton C[[�1, ..., �k]], sl ∈ Sk(l) and C[sl] = t.

The consistency condition for (l, t) ensures that the term t can be obtained from
a skeleton and a sub-list of l. It ensures also that there exists only one way to
obtain t from a skeleton and a sub-list. Then, the uniqueness of the skeleton and
the sub-list allow to denote by skel(l, t) and sub(l, t) the associated skeleton and
sub-list of a consistent couple (l, t).

The consistency condition is not necessary in a general rewriting-rule frame-
work. It is required in the method presented here in order to reduce the search
space for learning rules. In order to ensure the consistency condition:

– we can require that the order of words occurring in a term is the same that
the order of words in the associated sentence,

– we can also require that each word occurring in a term occurs exactly one
time in the associated sentence.
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3.3 Rewriting Rule

A rewriting rule allows to replace a part of a list of terms, by a new term,
containing some terms of the list of sub-terms. This replacement is made under
some conditions that are specified in the rule. For this reason, we propose the
following general and formal definition:

� Definition : Rewriting rule. A rewriting rule is defined by an integer k
and a triple (Cond, Ext, T ) that expresses how to apply it on a list l decomposed
into three sub-lists l = l1.l

′.l2,

– Cond is a condition which has to be satisfied by (l1, l′, l2),
– Ext specifies conditions on sub-lits l′′ with size k that can be extracted

from l′. Ext(l′) denotes the set of sub-lists that can be extracted from l′ by
applying Ext

– T = C[[�1, ..., �k]] is a k-context.

This definition is very general. It will be illustrated in Section 4, after having
defined a first order language.

Given a list of terms l, to apply a rewriting rule r = (Cond, Ext, T ), we first
need to search for a decomposition l = l1.l

′.l2 such that the condition Cond
is satisfied for (l1, l′, l2). Then, given l′′ ∈ Ext(l′), the list l1.[C[l′′]].l2 can be
produced from l, by applying r.

In this general context, given a list of terms l and a rewriting rule r, applying
r to l may produces different results; we note the set of results r(l). In the same
way, we note r2(l) = {r(l′)|l′ ∈ r(l)}, and so on. We note r∗(l) the set rn(l) such
that the rule r cannot be applied to any element of rn(l), if it exists.

The previous definition is very general, we do not propose a precise formalism
to express conditions and extraction methods. In the next section, we detail a
specific form of rule.

3.4 Languages Specification

We specify here the language used in our experiments. Examples are couples
(list, term) associated to a sentence. In such couples, list is a list of terms and
term represents information to extract from the sentence.

Initially, the list of terms is built from the elements in the sentence, associated
to their corresponding syntactical tag. As mentioned above, TreeTagger has been
used for the tagging task. The language for terms in the initial lists of terms is
then specified as follows:

– all the syntactical elements (words, punctuations) are 0-ary symbols,
– any tag is a 1-ary symbol.

We have used the tagset proposed in the original English parameter files given
with TreeTagger [Tre]. We have added a specific tag “dimension” for expression
such as “2− 4× 2.5 cm”.
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Concerning the right-hand part of the examples, the language used has to
represent conceptual information associated to a sentence, mainly the concepts,
the attributes and values, and the “part of” relations. Moreover, some symbols
have been introduced to handle lists.

We chose to use a detailed language; the symbols are (the arity is specified
behind /) :

n/1: the argument of this symbol is a concept,
attr/1: the argument is an attribute,
val/1: the argument is a value,
prec/1: the argument is a precision (mainly expressed by adverbs),
att/3: this symbol allows to build an attribute/value association; the arguments

are an attribute, a value and a precision. We always put 3 arguments, even
when some information is missing in the sentence. In this case, we use the
0-ary symbol e. For example, “mostly pilose” is represented by the term
att(prec(mostly), val(pilose), attr(e)), the attribute is not indicated.

latt/2: this symbol is used for lists of attribute/value associations, the first ar-
gument is made with the symbol att and the second is a list of attribute/value
associations or e. We have chosen to systematically use this symbol, even for
a single attribute/value association.

range/2: allows to express range of values; this symbol may appear as an ar-
gument of val,

disj jj/2: express a disjunction of values (conjunction of values are expressed
with lists),

nj/2: this symbol is used for some noun-adjective association, such as “lower
lobe” (nj(lower, n(lobe))), “posterior lip” (nj(posterior, n(lip))), ...

rj/2: this symbol is used when a value is associated to an adverb, such as “mostly
triangular” (rj(mostly, triangular)) or “slightly emarginate” (rj( slightly
, emarginate)), ...

desc/2: this symbol allows to express that a list of attributes/values describes
a particular part of the plant. The arguments are a concept and a list of
attributes/values,

partOf/2: this symbol expresses a “part of” relation; it has two arguments,
one corresponding to a concept (build with symbols n or desc) and one
corresponding to a precision,

conj nn/2: this symbol expresses conjunctions of concepts, it is used when
different part-of relations are described in a sentence.

These symbols are illustrated on the following example: the initial sentence
is:

“Corolla tubular to funnelform, +/- arcuate , 2-lipped , mostly pilose, usually
red, the posterior lip entire or slightly emarginate, the anterior lip 3-lobed”

and the associated term is:
partOf(

desc(n(corolla),
latt(att(val(range(tubular,funnelform)), attr(e), prec(e)),
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latt(att(prec(+/-), val(arcuate), attr(e)),
latt(att(val(2-lipped), attr(e), prec(e)),
latt(att(prec(mostly),val(pilose), attr(e)),
latt(att(prec(usually),val(red), attr(e)), e)))))),

conj nn(
desc(nj(posterior,n(lip)),

latt(att(val(disj jj(entire,rj(slightly,emarginate))),
attr(e), prec(e)),e)),

desc(nj(anterior,n(lip)),
latt(att(val(3-lobed), attr(e), prec(e)),e))),

prec(e))

4 Learning Method

As mentioned above, we propose to learn from an initial set of couples C0 =
{(list0i , termi)}. We require that any initial couple is consistent.

Once a rule r has been learned, it is applied to any list list0i , if possible,
giving new examples C1 = {(list1i , termi)}, where list1i is obtained by applying
r to list0i as many times as possible, otherwise list1i = list0i . Then, this process
is repeated to define C2 from C1, ...

In our framework, when a learned rule r is applied to a list l, we require r∗(l)
to exist and to be a singleton. This means that if there are different ways to
apply r to a list l, the way r is applied has no importance and any way to apply
r leads to the same result. In practice, such rules, if generated, will cover negative
examples and therefore are rejected by the learning process; this is realized due
to the definition of negative examples.

Moreover, the form of the learned rules ensures that any Cm contains only
consistent examples.

For learning a rule, the idea is to use any subterm and their corresponding
list of terms as positive examples. Then, at any step, the set of examples used
in the learning process has to be defined from Cn = {(listni , termi)}.

4.1 Positive and Negative Examples

Given a set of couples Cn = {(listni , termi)}, we define the set of positive exam-
ples E+

n as the set of couple (lki , tki ) such that tki is a subterm of termi and lki is the
corresponding part of the list listni . In order to automatically build E+

n from Cn,
this definition requires a function that maps any subterm to the corresponding
part of the list. Given a couple (listni , termi) and a subterm tki from termi, since
the couple is consistent, there exists a unique skeleton sk = C[[�1, ..., �k]], and a
unique sub-list sl ∈ Sk(listni ) such that C[sl] = termi. Then, there exists a sub-
term sk′ = C′[[�j , ..., �j+p]] of sk, and the corresponding sub-list sl′ such that
tki = C′[sl′]. The sub-list sl′ can be written [listni (j1), listni (j2), ..., listni (js)], we
propose to choose lki = [listni (j1), listni (j1 +1), ..., listni (js)], which is the shortest
part of list associated to tki .
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An example (lki , tki ) is said to be covered by a rule r if r(lki ) is unique and
r(lki ) = [tki ].

From the set of positive examples, we propose to define the set of negative
examples E−

n as the set of couples (l−i , t−i ) such that l−i is a part of a list of lkj
for (lkj , tkj ) ∈ E+

n and (l−i , t−i ) �∈ E+
n (any term t−i such that(l−i , t−i ) �∈ E+

n can be
chosen). The set of negative examples is then infinite, and in practice it is not
generated. To ensure that no negative example is covered, it is sufficient to test
whether each time a rule r can be applied on listni , (listni , termi) ∈ Cn, the term
produced by the rule is a subterm of termi.

4.2 Form of the Learned Rules

As mentioned above, a rewriting rule is a triple (Cond, Ext, T ), where T is a
k-skeleton. We propose to write a rule (associated to a k-skeleton T ) as :

r = [list0, (�1, Symb1), list1, . . . (�n, Symbn), listn]→ T
where: listi is a list of list of terms and Symbi is a list of symbols

We have to specify Cond and Ext from this representation. Let l1, l′ and l2,
be lists of terms, Cond is satisfied by (l1, l′, l2) if l′ can be written

l′ = ll0.[t1].ll1.[t2].ll2. ... .[tk].llk
with lli ∈ listi and top(ti) ∈ Symbi. In this case, [t1, ..., tk] belongs to Ext(l′).

In this representation of a rule, listi corresponds to the list of possible separa-
tors between terms occurring in the list and in the term. Let us notice that when
the condition is satisfied for (l1, l′, l2), it does not depend on l1 nor l2. In this
context, the condition does not depend on the context of the list to be replaced.

Consider the following examples (list1, term1) and (list2, term2):
list1 = [dt(the), nn(stem), in(with), nn(anther), jj(2− locular)]
term1 = partOf(stem, desc(anther, 2− locular)
list2 = [nn(bract), pct(virg), dt(the), nn(margin), vvn(toothed)]
term1 = partOf(bract, desc(margin, toothed)

they are covered by the following rule:
r = [[[dt(the)], []], (�1, [nn]), [[in(with)], [pct(virg), dt(the)]], (�2, [nn]),

[[]], (�3, [jj, vvn]), [[]]] → partOf(�1, desc(�2, �3))

The construction of this rule is illustrated in the following table:

lst1 lst2 → r
l0 [ dt(the) ] [] [[dt(the)], []]
t1 nn(stem) nn(bract) �1 = nn(...)
l1 [in(with)] [pct(virg),dt(the)] [[in(with)], [pct(virg),dt(the)]]
t2 nn(anther) nn(margin) �2 = nn(...)
l2 [] [] [[]]
t3 jj(2-locular) vvn(toothed) �3 = jj(...) or vvn(...)
l3 [] [] [[]]

4.3 The Search Space

Given a set of positive examples E+
i (and the associated set of negative examples

E−
i ), the goal is to find a rule covering some positive examples and covering
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no negative ones, in a “divide-and-conquer” way. In this paper, we propose a
simplified method, based on a decomposition of the set E+

i into a partition
G1, . . . , Gn, where examples with the same skeleton are in the same group.

A rule is built by generalizing examples of a group. Given a group Gi and the
associated skeleton C[[�1, ..., �k]], it is possible to write:

Gi = {llj0.[�
j
1].ll

j
1.[�

j
2]. ... .[�j

k].lljk}, j = 1..|Gi|.

since examples are consistent (in the previous notation, we just write �j
p in the

term l, where the terms of sub(l, t) occur, for an example (l, t) of the group).
Then, we propose to build the rule:

r = [list0, (�1, Symb1), list1, . . . (�k, Symbk), listk]→ C[[�1, ..., �k]].

where listp = ∪j=1..|Gi|ll
j
p, p = 0..k, and Symbp = ∪j=1..|Gi|top(�j

p), p = 1..k.
If a rule covers a negative example, it is rejected. The search starts with groups

for which the associated skeleton has the lowest depth.

4.4 Learning Process

Our learning process differs from the usual divide-and-conquer methods: each
time a rule is learned, t is applied on the set of positive examples. Each rule is
then built from a particular set of positive examples. This choice is motivated by
the general process of the transformation of a text into a term: rules are applied
in the same order they are learned. When a rule is applied, some rules may have
been applied before, then, when we start learning a rule, the rules previously
learned have to be applied.

Formally, let ri be the rule learned from E+
i (starting by r0). We define E+

i+1 =
r∗i (E+

i ) = {(r∗i (list+), term+)|(list+, term+) ∈ E+
i }.

The learning process stops when each example (list+, term+) ∈ E+
n is such

that list+ = [term+], or when any new rule covers some negative examples.

5 Experiments and Conclusion

This approach has been applied in the field of botany, using a corpus on vascular
plants of central French Guiana. We have used the description of 5 plants, corres-
ponding to 54 texts, and producing 1115 initial positive examples. The method
produces 49 rules covering 81,3% of the positive examples.

The preliminary results are very promising since many improvements can be
done: we have used a simplified method for learning a rule; some of the uncovered
positive examples could have been covered by splitting some of the groups Gj

or by exploring in more details the search space. It could also be interesting
to consider the context of the examples: some ambiguous cases could be solved
by including in the rule, the category of elements preceding and following the
examples. As mentioned above, we will focus in further works on the learning
task: we proposed in this paper a least general generalization approach, learning
more complex rules is an interesting ILP perspective.
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Moreover, in some cases, the rules cannot be based only on categories of ele-
ments. Consider the examples “corolla glandular, mauve or white” and “corolla
blue, mauve or white”. In the first case, the disjunction concerns the words
“mauve” and “white”, in the second case it concerns the 3 colors. This situation
could be treated by using additional information or by producing rules allowing
different possible transformations from the same text.
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A An Example of Flore Description: ANISACANTHUS

Branching herbs or subshrubs. Stems covered with brown or gray exfoliating bark.
Leaves: petioles present or absent; blades linear to lanceolate, cystoliths present.
Inflorescences spicate, racemose, or paniculate, the flowers secund or opposite,
borne singly or several at inflorescence node; bracts and bracteoles mostly trian-
gular to linear, usually caducous. Flowers: calyx 3-5-lobed, the lobes triangular
to linear; corolla tubular to funnelform, arcuate, 2-lipped, mostly pilose, usually
red, the posterior lip entire or slightly emarginate, the anterior lip 3-lobed; sta-
mens 2, the anthers 2-locular, subequal, not mucronate or appendaged. Capsules
subpyriform, slightly beaked. Seeds 2-4, homomorphic, flattened, each supported
by curved retinaculum.

B Positive Examples Corresponding to the Firt Two
Sentences

ex([vvg(branching),nn(herbs),cc(or),nn(subshrubs)],
disj nn(desc(latt(att(val(branching), attr(e), prec(e)), e), n(herbs)),

n(subshrubs)) ).

ex([nn(stems),vvn(covered),in(with),jj(brown),cc(or),jj(gray),
vvg(exfoliating),nn(bark)],

partOf(n(stems),desc(latt(att(val(disj jj(brown, gray)), attr(e), prec(e)),
latt(att(val(exfoliating), attr(e), prec(e)), e)), n(bark)))).

C Examples of Learned Rules

rule 1: [[[[]], (�1, [nn]), [[cc(and)]], (�2, [nn]), [[]]],
conj nn(�1, �2)]

for example applied to “bracts and bracteoles”

rule 2: [[[[]], w(�1, [dim]), [[]], w(�2, [rb, nn, jj]), [[]]],
att(val(�1, �2, prec(e))]

for example applied to “6-8 cm long”, “15mm diam”, ...

rule 3: [[[[]], (�1, [vv, jj]), [[pct(virg)]], (�2, [jj]), [[pct(virg), cc(or)]],
(�3, [vvg, jj]), [[]]],

disj jj(�1, disj jj(�2, �3))]
for example applied to “spicate, racemose, or paniculate”.

rule 4: [[[[]], (�1, [range, jj]), [[pct(virg)]], (�2, [att]), [[]]],
latt(att(val(�1), attr(e), prec(e)), latt(�2, e))]

for example applied to “triangular to linear, usually caducous”. Let us notice
that this rule is learned after some rules have been learned and applied to exam-
ples: a first rule has produced the term range(triangular, linear), a second rule
has produced the term att(prec(usually), val(caducous), attr(e)) from “usually
caducous”.
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Abstract. In this paper, we give an algorithm for computing the value
of the kernel function KTERM , which takes a pair of terms in first-order
logic as its inputs, and facilitates Support Vector Machines classifying
terms in a higher dimension space. The value of KTERM (s, t) is given
as the total number of terms which subsume both s and t. The algo-
rithm presented in the paper computes KTERM (s, t) without enumerat-
ing all such terms. We also implement the algorithm and present some
experimental examples of classification of first-order terms with KTERM .
Furthermore, we also propose the concept of intentional kernels as a gen-
eralization of KTERM .

1 Introduction

The Support Vector Machine (SVM, for short) technique combined with kernel
functions is now attracting much attention in Machine Learning. Kernel func-
tions were originally investigated for classifying numeric data with non-linear
separating functions. Recently kernel functions have been developed for struc-
tured data, such as strings and trees. The aim of this research is to apply the
SVM technique to data represented in first-order formula or logic programs. In
the present paper we introduce a kernel function KTERM for data in the form
of first-order terms and give an efficient algorithm to compute the function.

The kernel function KTERM is a natural extension of the DNF kernel and
the monotone-DNF kernel, which are developed for Boolean data by Khardon
et al. [6] and Sadohara[10][11]. We analyzed the two kernels and showed that
they are based on anti-unification [9] (least common anti-instance, least general
generalization) of monomials of Boolean formulae[12]. The kernel KTERM is
designed on anti-unification of two first-order terms. More precisely, KTERM is
given as the total number of terms which subsume the anti-unification of the
arguments. In this study we also propose a general concept intensional kernel
and show that KTERM as well as the DNF kernel and the monotone-DNF kernel
are instances of intentional kernels.
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Several kernels have been proposed for logical formulae. Gärtner et al. [3] have
presented a kernel function for higher-order terms. The kernel is defined with
the complexity of the structure of higher-order terms. The structure is obtained
by traversing the terms in a top-down manner. The kernel KTERM is different
from the kernel on the point that our kernel considers the number of terms
subsuming two terms. Muggleton et al. [7] have presented a kernel function for
SVILP (Support Vector Inductive Logic Programming). Their kernel function
is based on the subsumption relation for definite clauses, and similar to ours.
However, they have not shown any clear algorithm for their kernel function. We
propose an algorithm for KTERM .

This paper is organized as follows. In Section 2 we give the definition of the
kernel function KTERM . In Section 3 we give an algorithm computing KTERM .
In Section 4 we show validity and some other properties of KTERM . In Section 5
we give some experimental examples about KTERM . We conclude our discussion
with introducing the concept of intensional kernels and comparing it to the
convolution kernel in Section 6.

2 Kernel Function KTERM

We follow the standard terminology and notations in Logic Programming, In-
ductive Logic Programming, Support Vector Machines, and kernels. For more
detailed definitions and results readers should refer some textbooks in these areas
(e.g., [1,8]).

Let X be a set, and B be the set {−1, 1}. We call X an input space. A
training example is a pair (x, E(x)) ∈ X × B where X is a finite subset of X ,
and E : X −→ B. We call the function E a training function. The element x is
called a positive example if E(x) = 1 and is negative if E(x) = −1.

The SVM technique with kernel functions is aimed at finding a total function
F : X −→ B such that F (x) = E(x) for every training example (x, E(x)). The
function F is called a separating function for E. The original form of the SVM
technique can be applied in the case that X = Rd and F is a linear function
using the dot product. When non-linear separating functions are needed or when
X is not identical to Rd for any d ≥ 1, a function φ : X −→ Rd for some d is
introduced in order to apply the SVM technique. To such cases SVMs can be
applied without using the definition of φ but with the function

K(x, y) = φ(x) · φ(y).

The function K is called a kernel function or (a kernel , for short).
The kernel KTERM is designed for learning in the cases when the input space

is the set of first-order terms. In order to define the input space formally, we
refer the subsumption relation of terms. We say a term t subsumes another s
and write t � s if s = tθ for a substitution θ. The relation � is called the
subsumption relation. The subsumption relation is a partial order. Two terms t
and s are variants of each other if t � s and s � t. With T we represent the
set of terms where all variants of every term t are regarded as the same one. We
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f(a,b,c)

f(X,c,d)

f(X,Y,Z)

f(Y,a,c)

f(X,X,Y)

Positive examples

Negative examples

( f(X,Y,Z))

( f(X,c,d))
( f(Y,a,c))

( f(X,X,Y))
( f(a,b,c))

Negative examples

Positive examples

Rd

Fig. 1. Illustration of learning in a high dimension feature space Rd

remove singleton variables from T in order to make it easy to apply KTERM

to the domain of atomic formulae. Figure 1 shows brief explanation of learning
with SVM technique. Every positive and negative example is represented as a
first-order term in T . In this paper we follow the Prolog style notation. That is,
every function and constant is represented by a small letter, and every variable
is represented by a capital letter.

The kernel KTERM is the one for a mapping φTERM : T −→ R∞ defined as

φTERM (t) = (φ1
TERM (t), φ2

TERM (t), . . .),

where

φi
TERM (t) =

{
1 (if si � t),
0 (otherwise)

and σ = s1, s2, . . . is the list of terms in which does not include any variants or
any singleton variable, that is, the enumeration of T . Note that φi

TERM (t) = 1
for only finitely many i’s. This means that the domain of any training function
E is mapped to a subset in Rd for some d, and therefore we can apply the SVM
technique in Rd. So we can define the kernel KTERM as

KTERM(s, t) = φTERM (s) · φTERM (t),

which returns a finite value for any t and s.
An interesting property of KTERM is that it is characterized with the anti-

unification of s and t. Let lca(s, t) be the anti-unification (also sometimes called
the least common anti-instances or the least general generalization) [9] and
size(u) be the number of terms which subsume a term u without the term
of a singleton variable.

Proposition 1 ([12]). For every pair of terms s and t,

KTERM(s, t) = size(lca(s, t)). (1)

If the root function symbols of s and t are different, KTERM (s, t) = 0.
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3 Algorithm for Computing KTERM

This section shows an efficient algorithm for computing the kernel function
KTERM . For obtaining the value KTERM(s, t), we need two algorithms: one
is for computing anti-unification u of s and t, and the other is for the total
number of terms which subsume u (see Equation (1)). Since the former is shown
by Plotkin[9] (see also [8]), the latter is all that we have to present here. The
algorithm is named TermSize.

3.1 Basic Terminology and Notation

We introduce terminology and notation needed for explaining our algorithm.

Definition 1 (Types of substitutions). We classify substitutions for a vari-
able X in a term u into the following three: A function substitution takes the
form of {X := f(V1, . . . , Vn)} where f is a function symbol and V1, . . . , Vn are
mutually distinct variables not occurring in u. A constant substitution takes the
form of {X := c} for a constant c. A variable unification takes the form of
{X := Y } where Y is another variable occurring in u. For a substitution θ in
either of the three classes, the variable X is denoted by dom(θ).

It is known that the subsumption relation makes the set T be a complete lattice,
which we call the subsumption lattice.

Definition 2. For a term u whose root function symbol is f , the most gen-
eral term for u, denoted by mgt(u) is defined as the term f(V1, . . . , Vn) where
V1, . . . , Vn are mutually distinct variables.

Definition 3. For a term t and u, lat(u, t) denotes the sub-lattice of the sub-
sumption lattice whose maximal element is t and minimal element is u.

Example 1. In Fig. 2, we illustrate the lattice lat(f(g(X, a), h(a)), f(X, Y )).
Note that f(X, Y ) = mgt(f(g(X, a), h(a))). In the figure, every thick line ex-
presses a function substitution, and every thin line expresses a constant substi-
tution or a variable unification.

Definition 4. The occurrence of a subterm s in a term t, denoted by Oc(s, t),
is defined by using a sequence i1.i2. . . . .in of natural numbers as follows:

1. The occurrence of the term t is Λ, an empty sequence.
2. If the occurrence of a subterm of the form f(t1, . . . , tm) is α, then the oc-

currence of ti is α.i.

For a sequence o of natural numbers t/o denotes the subterm of t whose occur-
rences is o.

Definition 5. For a term t, var(t) denotes the set of all variables occurring in
t. Note that even if a variable X occurs twice in t, X occurs only once in var(t).
For a term t, con(t) denotes the set of all constants occurring in t.
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{W:=h(Z)} {V:=g(X,Y)}

{Y:=a}

f(g(X,a),h(a))

f(g(X,Y),h(a))f(g(X,Y),h(Y))f(g(X,a),h(Z))

f(V,h(Z))f(g(X,Y),W)

))a(h,V(f)W,)a,X(g(f

f(V,W)

{Z:=a}
{Y:=a}

{Y:=a}

{Z:=a}
{V:=g(X,Y)}{W:=h(Z)}

{W:=h(Z)}{V:=g(X,Y)}

f(g(X,Y),h(Z))

{Z:=Y}
{Z:=a}{Y:=a}

Fig. 2. Subsumption lattice with the minimum element f(g(X,a), h(a))

Definition 6. A linear term is a term in which no variable occurs more than
twice. A constant-free term is a term which contains no constants.

Definition 7. Let f be a function with n arguments. Then tf,c,n and tf,V,n

mutually denote the term f(c, . . . , c) and f(V, . . . , V ), where c is a constant and
V is a variable. We sometimes omit the n of tf,c,n and tf,V,n if it is clear from
the context.

3.2 Outline of TermSize

We explain the outline of our algorithm TermSize. The algorithm consists of
two phases, Enum and TermOp. This construction is based on the following
proposition.

Proposition 2. For every t subsuming u, there is a sequence θ1, θ2, . . ., θn of
substitutions and a number N (1 ≤ N ≤ n) such that

1. t = mgt(u)θ1θ2 · · · θn,
2. every θi for 1 ≤ i ≤ N is a function substitution, and
3. every θi for N + 1 ≤ i ≤ n is a constant substitution or variable unification.

The term mgt(u)θ1θ2 · · · θN is linear and constant-free. Moreover, if t is linear
and constant-free, we find such a sequence that N = n.

The first phase of TermSize is named Enum. In the phase, from the input u of
the algorithm, mgt(u) is generated and function substitutions are applied to it in
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f(V,h(Z))f(g(X,Y),W)

f(V,W)

f(g(X,Y),h(Z))

f(V,h(a))

f(V,h(Z))

f(g(X,a),h(a))

f(g(X,Y),h(a))f(g(X,Y),h(Y))f(g(X,a),h(Z))

f(g(X,Y),h(Z))

f(V,W)

f(g(X,a),W)

f(g(X,Y),W)

Fig. 3. Illustration of Computation Enum for term f(g(X,a), h(a))

order to generate terms subsuming u. From the proposition above, every gener-
ated term is linear and constant free. For avoiding redundancy in the generation
we use the refinement of the above proposition.

Proposition 3. Let t and u be linear and constant-free terms such that t � u.
Then there is a sequence θ1, θ2, . . ., θN of function substitutions such that the
sequence

Oc(dom(θ1), t), Oc(dom(θ2), tθ1), . . . , Oc(dom(θN ), tθ1 · · · θN−1)

keeps the lexicographic order in sequences of integers, and u = tθ1 · · · θN .

The second phase TermOp is computing the number of terms obtained by ap-
plying variable unifications and constant substitutions to each term generated
in Enum. Its implementation with dynamic programming is explained later.

Example 2. Figure 3 shows how to work the algorithms TermSize. The phase
Enum the function substitutions represented with thick arrows are applied to
mgt(t) but other function substitutions are not applied. Each of the circles indi-
cates the sub-lattices which is obtained by applying constant substitutions and
variables unifications to a linear term generated in Enum. The number of terms
computed by TermOp is same as the number of nodes of subsumption lattice in
Fig. 2.

3.3 Foundations of Designing TermOp

Let t be a linear term subsuming u, set(u, t) denote the set of all terms sub-
suming u and generated by constant substitutions and variable unifications for
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t, subsize(u, t) be the number of elements in set(u, t). The phase TermOp is
for computing subsize(u, t). The elements in set(u, t) form a lattice with the
subsumption relation.

Proposition 4. The lattice set(u, t) has a minimum element.

Theorem 1. Let s1, . . . , sk be the list of all terms generated by repeated appli-
cation of function substitutions to mgt(u). (si �= sj) Then it holds that

size(u) =
k∑

i=1

subsize(u, si).

Proof. Because si �= sj and both of si and sj are obtained only by applications of
function substitutions to mgt(u), we cannot obtain si by applying constant sub-
stitutions and variable unifications. Then the theorem holds from Proposition 2
and the definition of set(u, si).

Now we explain how to compute subsize(u, si) in the theorem above. Let mi be
the minimum element of the lattice set(u, si). Note that si is a linear term from
Proposition 2. The number of distinct variables and constants in mi is important
for computation of subsize(u, si).

Theorem 2. Let s be a term obtained by applying function subsumptions to
mgt(u), and mi be the minimum element in the lattice set(u, si). For every c ∈
con(mi) let τc be the number of occurrences of c in mi. For every V ∈ var(mi)
let ηV be the number of occurrences of V in mi. Then it holds that

subsize(u, s) =
∏

c∈con(mi)

size(tf,c,τc)
∏

V ∈var(mi)

size(tf,V,ηV ).

Proof. We must treat substitutions to symbols which are same variables or con-
stants in mi simultaneously, because we must consider variants by variable unifi-
cation. On the other hand, substitutions to symbols which are different variables
or constants in mi can be treated independently because we need not consider
variable unification. Therefore, we compute the number of terms with substitu-
tions for every V ∈ var(mi) or every c ∈ con(mi), and product these numbers
of terms for every variable in var(mi) or every constant in con(mi). For every
computation of the number of the terms with substitutions for every variable in
var(mi) (or every constant in con(mi)), we can ignore functions in si. We can
use tf,c,τc or tf,V,ηV instead of the original term in the computation.

The most important point in this theorem is that we have to treat substitutions
for variables are same variables or constants in u because we must consider
variants by variable unification. Therefore, what we have to do is computing
size(tf,c,n) and size(tf,V,n). However, as explained below, size(tf,c,n) can be
reduced to size(tf,V,n), and we consider only computing size(tf,V,n).
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size(f(X,X)) size(f(X,X))

f(g(X,Y),h(Z))
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size(f(a)) size(f(X,X))
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X

f(X,Y)

f(X,X)
= X

f(X,Y)

f(X,X)

f(X,Y)

f(X,X)

Fig. 4. Counting terms for constant substitution and variable unification

Theorem 3. For every function f with arity n, we prepare a new function f ′

with arity n + 1. Then it holds that

size(tf,c,n) = size(tf ′,V,n+1).

Proof. We transform every term in lat(tf,c,n, mgt(tf,c,n)) into a term in
lat(tf,Vn+1,n+1, mgt(tf,Vn+1,n+1)) by adding one argument Vn+1 to f and re-
placing c with Vn+1. This transformation is one-to-one, and therefore, it holds
that size(tf,c,n) = size(tf,V,n+1).

Example 3. Figure 4 shows computing subsize(f(g(a,Y ),h(Y )),f(g(X,Y ),h(Z)))
according to Theorem 2 and 3. The minimum element of set(f(g(a, Y ), h(Y )),
f(g(X, Y ), h(Z))) is f(g(a, Y ), h(Y ). For u = f(g(a, Y ), h(Y )), the constant oc-
curring in u is a and variable occurring in u is Y . Therefore, it holds that

subsize(f(g(a, Y ), h(Y )), f(g(X, Y ), h(Z)))
= size(f(a))× size(f(X, X)) (by Theorem 2)
= size(f(X, X))× size(f(X, X)) (by Theorem 3)
= 2× 2 = 4.

Computing size(tf,V,n) is based on counting terms with n variables. Let us con-
sider the process of classifying n variables into l classes. We intend that all of
the variables in one class is unified and that with this variable unification a term
with l distinct variables at n occurrences is generated.

Proposition 5. Let gl(n) be the number of terms with n occurrences of variables
and l classes of variables. Then it holds that

size(tf,V,n) =
n∑

l=1

gl(n).

Proof. Directly from the definition of gl(n).
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In other words, gl(n) is the number of terms generated by applying variable unifi-
cations n− l times to mgt(tf,V,n). We explain an example of ad hoc computation
of size(tf,V,n).

Example 4. We consider computation of size(tf,V,4). The combinations of a
number of occurrences of variables is as follows: {4, 0, 0, 0} for one variable,
{3, 1, 0, 0} and {2, 2, 0, 0} for two variables, {2, 1, 1, 0} for three variables, and
{1, 1, 1, 1} for four variables. Therefore, g1(4) = 4!

4! = 1, g2(4) = 4!
3!1! + 4!

2!2!2! = 7,
g3(4) = 4!

2!1!1!2! = 6, g4(4) = 4!
1!1!1!1!4! = 1, and size(tf,V,4) =

∑4
l=1 gl(4) = 15.

As is shown in Example 4, if we can compute gl(n) by enumerating all combi-
nations of variables, the computation time of gl(n) is exponential time for n.
However, gl(n) satisfies a recursive equation in the next theorem, and therefore,
can be computed in O(n2) time.

Theorem 4. Let gl(n) be the number of such terms of the form f(V1, V2, . . . , Vn)
that the n variables are classified into l classes. Then gl(n) satisfies

gl(n) =

⎧
⎨

⎩

l × gl(n− 1) + gl−1(n− 1) (n ≥ l > 1),
1 (n ≥ l = 1),
0 (l > n ≥ 1).

Proof. The case that the n variables in f(V1, V2, . . . , Vn) are classified into l
classes are separated into two disjoint subcases. The first subcase is that l − 1
classes of variables are in V1, . . . , Vn−1. Assignment of the variable Vn is lth class
of variables which is not assigned to V1, . . . , Vn−1. The second subcase is that
l classes of variables are in V1, . . . , Vn−1. Assignments of the variable Vn are l
classes assigned to V1, . . . , Vn−1. This proves the theorem.

Proposition 5 and Theorem 4 show that size(tf,V,n) is the Bell number, and can
be computed by using the Stirling number of the second kind.

3.4 Implementation of the Algorithms

We show the program lists of TermSize and Enum in Fig. 8. We explain the pre-
processing phases for TermOp, SearchSame and MakeNode. SearchSame enumer-
ates subterms of term u, and outputs the set of occurrences for each subterm.
MakeNode computes the maximum number M of occurrences of same subterms,
and saves size(tf,V,1), . . . , size(tf,V,M) in an array Node.

The dynamic programming with the recursive equation in Theorem 4 can
compute size(tf,V,n) in O(n2) time. TermOp is computed in O(n2) time because
the computation of subsize(u, si) is projection of size(tf,V,n). However, the total
computational time is exponential because exponential size of terms for functions
are generated in Enum. If the number of functions is small, we can compute
KTERM efficiently.

4 Properties of KTERM

This section shows some properties of the kernel KTERM .
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Theorem 5. KTERM satisfies symmetric positive definiteness; KTERM (s, t) =
KTERM(t, s) for any terms s,t, and

∑
i,j ciKTERM(xi, xj)cj ≥ 0 for all ci.

Proof. Since lca(s, t) = lca(t, s), it holds that KTERM (s, t) = KTERM (t, s). The
fact that KTERM is positive definite is shown as

∑

i,j

ciKTERM(xi, xj)cj =
∑

i,j

cicjφTERM (xi) · φTERM (xj)

=
∑

i

ciφTERM (xi) ·
∑

j

cjφTERM (xj)

= (
∑

i

ciφTERM (xi))2

≥ 0.

We show KTERM is a good kernel according the criteria introduced in [2].

Theorem 6 (Completeness). For any t, s and s′ ∈ T , if KTERM (s, t) =
KTERM(s′, t) then s = s′. That is, if all the values of kernel functions are same,
inputs are also same.

Proof. Assuming that s �= s′, we prove KTERM(s, t) �= KTERM (s′, t) for some t.
In the case that s � s′ and s �= s′, lca(s, s′) = s is a proper general term for s′,
and by letting t = s′, we get KTERM (s, s′) < KTERM (s′, s′). If s �� s′, lca(s, s′)
is a term properly more general than s. Then KTERM(s, s) < KTERM (s, s′) (=
size(lca(s, s′))) and this means that we can let t = s for the conclusion.

Theorem 7 (Correctness). Let C be the set of all concepts. There exist αi ∈
R, si ∈ T , and θ ∈ R such that, for c ∈ C and s ∈ T ,

∑
i αiKTERM (si, s) ≥ θ

is equivalent to c(s).

This theorem shows that we can identify all concepts with appropriate positive
and negative examples. The theorem is proved by the next lemma.

Lemma 1. There exists a separating function for all positive and negative data
in a space according to φTERM (t). Each dimension corresponds to a term.

Proof. First, we prove that n given examples compose n−1 dimensional simplex
in the space according to φTERM (t) by an inductive method. We consider the
subsumption lattice of the n examples, and to add examples sorted by topological
sort. Then, one example composes a point (0 dimensional simplex). Next we
assume that i examples compose i−1 dimensional simplex, and add the (i+1)th
example. Because examples are sorted by topological sort, the (i+1)th example
does not subsume the previous i examples. Therefore, the value of dimension
according to the (i + 1)th example is 1 for only the (i + 1)th example. This
dimension is 0 for the previous i examples. Therefore i + 1 examples compose i
dimensional plane, that is, a simplex.

If n examples are vertices of an n−1 dimensional simplex, all subsets of vertices
are faces of simplex. Therefore, we can construct linear separating functions for
all combinations of positive and negative examples.
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f(g(X,Y),h(a))f(g(X,a),h(Z))
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f(g(X,a),W)
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f(V,h(Z))
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Term t
Positive examples

Negative examples

Fig. 5. An example which shows the logical concept “x is subsumed by t (t =
f(g(X,a), h(a)))”

An example of functions defined with KTERM is subt(x) = KTERM(x, t). The
value of subt(x) satisfies that

subt(x)
{

= size(t) (if t � x),
< size(t) (otherwise).

The function classifies terms x according to whether or not t � x, and this means
that subt(x) defines the concept C(t) = {x ∈ T | t � x}. This concept is very
simple defined with a singleton term, and is natural for KTERM .

5 Experimental Examples

We show some experimental results of our kernel function KTERM with some
small number of training examples. We have implemented our algorithm as the
original kernel function for SV M light[5].

Example 5. For learning a logical concept C(t) with the case t = f(g(X, a), h(a)).
We compute the separating function f1(x) with the following training examples
(Figure 5):

Positive. f(g(X, a), h(a)), f(g(b, a), h(a)), f(g(c, a), h(a)).
Negative. f(V, W ), f(g(X, Y ), W ), f(V, h(Z)), f(g(X, a), W ), f(g(X, Y ),

h(Z)), f(V, h(a)), f(g(X, a), h(Z)), f(g(X, Y ), h(Y )), f(g(X, Y ), h(a)).

The obtained separating function is

f1(x) � 1.666 KTERM (f(g(X, a), h(a)), x) − 0.333KTERM(f(g(X, a), h(Z)), x)
−0.333 KTERM (f(g(X, Y ), h(a)), x)− 1.666.

where f1(x) ≥ 0 ⇔ F (x) = 1.
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Fig. 6. An example which shows the logical concept “x is subsumed by t or s (t =
f(g(X,a), W )), s = f(V, h(a)))”
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Positive examples

Negative examples

Fig. 7. An example which shows learning a more complex concept

Example 6. For learning a logical concept M(t, s) = C(t) ∪ C(s) with the case
t = f(g(X, a), W ), s = f(V, h(a)). We prepare the following training examples
(Figure 6):
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Algorithm TermSize;
input: term u;
output: size(u);
begin

/* σ : Sequence of sets of occurrence of subterms in u;
Node : Array for size(tf,v,n); */
σ := SearchSame(u);
Node := MakeNode(σ);
n := Enum(u, σ, Node);
return n

end;

Procedure Enum;
input: term u, line σ,arrayNode;
output: size(u);
begin

/* function Right(u, β) : Output the occurrence of a variable
which is located in the right of all functions and β in u.
If no such occurrence exists output ‘end’ ;
function Row(u, α, sk+1) : Add a term to sk+1 which is
obtained by applying a function substitution at α in u;
function Term(sk) : The number of terms in sk;
function Ref(sk, i) : The ith term in sk; */
k := 0; n := 0; sk := an empty sequence;
Add the most general term of u into sk;
while sk is not empty do

sk+1 :=empty;
for i = 1 to Term(sk) do

n := n + TermOp(Ref(sk, i), σ, Node);
α := Right(Ref(sk, i), Λ);

while α is not ‘end’ do
Row(Ref(sk, i), α, sk+1);
β := α;
α := Right(Ref(sk, i), β);

end while;
k := k + 1;

end while;
return n;
end;

Fig. 8. Algorithms TermSize and Enum
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Positive. f(g(X, a), W ), f(g(X, a), h(Z)), f(g(X, Y ), h(a)), f(g(X, a), h(a)),
f(g(b, a), h(a)), f(g(c, a), h(a)), f(V, h(a)).

Negative. f(V, W ), f(g(X, Y ), W ), f(V, h(Z)), f(g(X, Y ), h(Z)),
f(g(X, Y ), h(Y )).

The obtained separating function is

f2(x) � 2.000 KTERM (f(g(X, a), W ), x) + 2.000KTERM(f(V, h(a)), x)
+6.661 KTERM (f(g(X, a), h(Z)), x)− 8.882KTERM(f(V, W ), x)
−2.000 KTERM (f(V, h(Z)), x)
−2.000 KTERM (f(g(X, Y ), h(Z)), x)− 1.

Example 7. Figure 7 shows learning a more complex concept.

Positive. f(V, W ), f(g(X, Y ), h(Z)), f(g(X, a), h(a)), f(g(b, a), h(a)),
f(g(c, a), h(a)), f(g(X, a), h(Z)), f(g(X, Y ), h(Y )), f(g(X, Y ), h(a)).

Negative. f(g(X, Y ), W ), f(V, h(Z)), f(g(X, a), W ), f(V, h(a)).

The separating function is

f3(x) � 8 KTERM (f(V, W ), x) + 4KTERM(f(g(X, Y ), h(Z)), x)
−6 KTERM (f(g(X, Y ), W ), x) − 6KTERM(f(V, h(Z)), x) + 1.

6 Concluding Remarks

The basic idea of KTERM can be generalized for the space where every feature is
an element of a partially ordered set. Let x, y be elements in a partially ordered
set. We call a kernel function defined with the set E(x, y) = {z|z � x, z � y}
an intentional kernel because a � b can be interpreted as “a explains b”. For
KTERM , the partially ordered set is T and KTERM = #(E(x, y)).

Both of the DNF kernel and the monotone DNF kernel are other examples
of intentional kernels. The kernels are defined by mapping every Boolean vector
into the space each coordinate of which is a monomial of propositional vari-
ables. We can define the subsumption relation for monomials in the similar
way of defining the subsumption relation of first-order terms[12]. By using the
subsumption relation, the kernel, for example, is represented as KDNF (x, y) =
�(E(x, y)) − 1.

At last we compare KTERM with the convolution kernel for trees defined by
Haussler [4]. The tree kernel pays attention to the sub-structure of trees, and
does not have any logical aspect. In contract, KTERM gives logical interpretation
of the data through anti-unification. The subsumption relation has the logical
meaning and KTERM maps the meaning to numbers. Therefore, we can apply
the basic concept of KTERM to definite clauses or other logical formulae[7].
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Abstract. Increasing the productivity of simulation-based semiconductor design
verification is one of the urgent challenges identified in the International Technol-
ogy Roadmap for Semiconductors. The most difficult aspect is the generation of
stimulus for functional coverage closure. This paper introduces a new Coverage-
Directed test Generation (CDG) feedback loop which applies Inductive Logic
Programming (ILP) to selected tests and coverage data to induce rules that can be
used to automatically direct stimulus generation towards outstanding coverage.
The case study documented in this paper shows a significant reduction of simu-
lation time when ILP-based CDG is compared to random test generation. This is
an exciting and promising new application area for ILP.

1 Introduction

ILP has been used to support scientific discovery and knowledge synthesis in a wide
range of practical domains [19] such as protein structure prediction, mutagenicity pre-
diction and pharmacophore discovery. Even the very process of scientific hypothe-
sis generation and experimentation has been automated using ILP-based learning in
a closed loop environment [12]. The main advantage of ILP over propositional learning
is the expressive power resulting from a first-order representation. This allows learning
results to be represented in a declarative format which is comprehensible to domain
experts, without losing the ability to automatically process the learning results.

This paper aims to introduce the reader to a promising new application area for ILP,
namely simulation-based semiconductor design verification, and demonstrates the po-
tential that ILP has to offer in the context of functional coverage closure.

Verification of industrial designs still relies heavily on simulation; it can take up to
70% of the entire design effort [1]. Traditionally, design verification environments are
based on a testbench [3] which is the code used to generate a valid input sequence to
a design, called a test, drive this test into the design and then observe and check the
design’s response. Simulators are used to execute testbenches. The increasing complex-
ity of real-world semiconductor designs makes exhaustive simulation prohibitive; in
most cases the sun would burn out before even a fraction of the test cases can be sim-
ulated [20]. In reality, tight time-to-market constraints force verification engineers to
be selective with respect to the tests they run to gain confidence in the functional cor-
rectness of a design. The verification plan specifies the scenarios that must be verified

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 154–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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before a design can be manufactured. It is the task of the verification engineers to create
tests that fully cover these scenarios, often within a very short timeframe.

Recent advances in simulation-based verification have established coverage-driven
verification methodologies which are essentially feedback loops that automate a large
part of the simulation-based verification process. A pseudo-random stimulus genera-
tor at the front-end generates valid input stimulus according to a set of parameters or
constraints, called directives, which bias test generation towards the scenarios of inter-
est to verification. At the back-end a coverage analysis tool collects and analyses the
coverage obtained from running these tests to check the effectiveness of the directives
and to identify coverage closure targets such as rarely covered events as well as cover-
age holes. Coverage results are used to help engineers focus the next round of stimulus
generation on these coverage targets.

Generating stimulus to increase functional coverage is a key challenge in simulation-
based verification. Closing a functional coverage model is by no means trivial in com-
plex industrial designs. For example, in state-of-the-art microprocessors, the subtle
effects of issuing multiple instructions, out-of-order execution and aggressive pipelin-
ing can make it very difficult if not impossible to see what sequence of instructions
to drive in order to reach a specific functional coverage scenario (coverage task). This
is particularly difficult when the signals involved in the specification of the functional
coverage task are related to micro-architectural features of the design.

In practice up to 90% of coverage tasks can be reached via biased pseudo-random
tests which are automatically generated based on a set of user-defined directives. How-
ever, even supplying the directives requires significant engineering skill and is often
only accomplished through many trial-and-error runs. At the end engineers resort to
writing directed tests by hand aiming to cover the missing cases. Consequently as much
as 90% of a verification team’s time and resources can be spent on closing the remain-
ing 10% coverage manually. Figure 1 shows the typical long flat-tailed curve when
plotting the coverage rate achieved by random simulation (y-axis) against the number
of simulation runs (x-axis). The data for this figure originates from our case study and is
representative for many industrial verification projects. It clearly shows that the number
of simulations necessary to obtain the last few coverage tasks is excessive in compari-
son to the number of simulations needed to get most of the coverage. This is one reason
why verification has become the dominant cost in the design process and many veri-
fication projects run over time and budget. Verification, if not done properly, can cost
a company its reputation and potentially put people at serious risk. If it takes too long
the product will miss its market window which results in loss or significant decrease of
the market share (and hence profits). The latest version of the International Technology
Roadmap for Semiconductors [1] calls for more automation in the process of functional
coverage closure to reach verification targets faster and with less engineering effort.

The most demanding aspect regarding full automation of the existing coverage-
driven feedback loops is the automatic generation of the directives for functional cov-
erage closure. Coverage-directed stimulus generation (CDG) techniques [18] aim to
achieve exactly this. Feedback-based CDG integrates machine learning into the feed-
back loop (which is depicted in Fig.2) in order to automatically generate new directives
that bias stimulus generation towards producing tests which target specific coverage
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Fig. 1. Coverage progress for random simulation compared to ILP-based CDG

tasks. Machine learning techniques employed in this context include Bayesian net-
works, evolutionary techniques such as genetic algorithms and genetic programming
as well as Markov chains. The underlying assumption is that the learning mechanism
can identify, from existing tests and coverage, how best to bias stimulus generation
such that the resulting tests can reach outstanding coverage tasks. As a result, the curve
in Fig.1 should climb significantly faster than random simulation thus saving a large
number of simulation runs and hence verification effort.

In contrast to other machine learning applications where the measure of success is
achieving a very high accuracy of the learning output resulting in a large lift when
comparing system performance with and without learning, this application is slightly
different in that the number of examples to learn from is variable and depends on when
the learning is kicked off during simulation. ¿From a machine learning viewpoint, the
later in the simulation phase learning is started the more examples are available, hence
a higher accuracy can be expected. Conversely, the earlier learning is started the fewer
examples are available, resulting in a lower accuracy. From a verification viewpoint,
however, the earlier the curve starts to climb faster than random simulation the more
verification effort can be saved.1 These two conflicting interests need to be traded off
carefully with the verification interests dominating in this context. For example, the
lift achieved in our case study, although in machine learning terms not impressive, was
good enough to save a significant number of simulations as shown in the two steeper
curves in Fig.1.

This paper introduces a novel CDG technique based on an inductive machine learn-
ing method that discovers relational information from structured data. Inductive Logic
Programming (ILP) is applied to tests and their related coverage in order to induce

1 Finding the best starting point for learning is a challenging optimisation problem which re-
quires further research. A second experiment in which learning commenced after 400 simula-
tions produced curves that climbed much slower than the two steep ILP-based CDG curves in
Fig.1 (but still faster than random simulation).
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general rules which describe the characteristics of these tests. The resulting rules can be
used directly as directives, to obtain tests that are structurally similar to the examples
presented to the learning system. Coverage closure can be automated by applying rule
learning to clusters of a target coverage task and combining the resulting rules to obtain
directives for test generation. As the tests and associated coverage are supplied to the
ILP system in a declarative representation, the induced rules are also declarative and in
principle human readable. This gives engineers an insight into the knowledge discov-
ered by the ILP system and is also an excellent basis for automatic translation of these
rules into test generation directives.

A case study demonstrates the fundamental principles of ILP-based CDG in two
steps. The first step evaluates the consistency and reliability of the generated directives
for existing coverage in a rediscovery experiment. The second step documents the re-
sults of the application of a novel cluster-based coverage closure method.

This paper is organised as follows. Section 2 reviews coverage models and existing
CDG approaches. Section 3 introduces the fundamental principles of ILP-based direc-
tive generation. The experimental framework and results of our case study are presented
in Section 4. Further research and conclusions are discussed in Section 5.

2 Background

This section reviews coverage models and existing CDG approaches.

2.1 Coverage Models

To measure the coverage of simulation test suites, coverage models are generally clas-
sified into structural and functional. Structural coverage is focused on measuring which
parts of the design source code have been exercised during simulation at various lev-
els of detail ranging from statement down to expression coverage. Structural coverage
helps verification engineers to see which code parts have not been verified. It is inher-
ently weak, however, in determining whether the design is functionally correct.

The most tricky bugs to find often reside in functional corner cases of the design
which involve multi-cycle scenarios and high degrees of concurrency. To ensure these
are covered during verification, experienced engineers define functional coverage mod-
els based on the specification, the design and often also the implementation. This makes
functional coverage models inherently user-defined and application-specific [22]. De-
signing meaningful functional coverage models requires significant design knowledge,
experience and engineering skill.

One way of specifying a functional coverage model is outlined in [13]. Their models
contain a semantic description (story) detailing the purpose of the verification task,
the list of attributes mentioned in the story, the set of all possible values (domain) for
each attribute and a list of restrictions on the permitted combinations in the Cartesian
product, or cross-product, of the attribute domains. The overall size of the coverage
space associated with such a functional coverage model is the product of all domain
cardinalities. The elements in the cross-product of the attribute domains are referred
to as coverage tasks. Each coverage task can be represented as an n-tuple of values
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from the attribute domains, where n is the number of attributes in the coverage model.
The restrictions identify which coverage tasks are legal and hence need to be covered
during verification. Uncovered legal tasks are referred to as coverage holes. The process
of constructing tests to cover a hole is called coverage closure. In this paper we mean
cross-product based coverage models when referring to functional coverage.

2.2 Feedback-Based Coverage-Directed Test Generation

Coverage-Directed test Generation (CDG) is a technique that aims to automate the gen-
eration of simulation stimulus based on coverage information [18]. There are two main
approaches towards CDG: one is by construction using formal methods and the other is
based on feedback. The approach introduced here can be classified as a novel feedback-
based CDG technique with a CDG engine that embeds Inductive Logic Programming.

The feedback-based CDG framework [8] is shown in Fig.2. It is built around a state-
of-the-art testbench automation environment that contains a stimulus generator, a sim-
ulator and coverage analysis. Coverage targets are identified and the coverage analysis
results are then fed into the CDG engine together with existing tests and coverage data
to generate directives that bias the random stimulus generator towards achieving the
target coverage tasks. The CDG engine can be realized with different techniques.

Early approaches [21] focused mainly on genetic algorithms (GAs) that learn specific
test cases, such as sequences of assembly code instructions, directly. This required an
explicit encoding of the target instructions within the representation on which the GAs
worked. Results were application-specific and lacked generality. In [4] another GA for
automatic bias generation is presented. This approach generates biases for an industrial
instruction stream generator. Its main drawbacks are the architecture-specific encoding
of the representation on which the GA works. The approach has also been transferred
to a hierarchical test generation framework to target statement and path coverage [24].
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A more flexible Genetic Programming (GP) technique that generates machine code
test programs for design verification, called µGP, was developed in [6]. It directs test
generation towards maximising code coverage with the goal to generate a set of test
programs that achieves maximum statement coverage. The test sets generated with µGP
are smaller and yield higher statement coverage than randomly generated tests [7]. The
approach requires a syntactical description of the microprocessor’s assembly language
in the form of an instruction library. The internal representation on which the µGP core
works is generic and test programs can be generated for any given instruction library.
The main limitation is that the approach only targets structural, i.e. code-based, cover-
age models, rather than functional coverage models based on cross-products, which in
practice are far more difficult to close.

In [9,5] a coverage-directed test generation approach based on Bayesian networks is
presented. It models the relationship between the test directives and coverage tasks via
a Bayesian network, where general knowledge regarding the design’s operation taken
from a domain expert is encoded in the network structure. This approach targets cross-
product functional coverage models and has resulted in a significantly improved cover-
age rate achieved in a shorter time frame. An advantage of the approach is that it can
discover diverse directives that all target the same coverage task. However, the design
and training of an appropriate Bayesian network is required; this includes the iden-
tification of the network structure that models the joint probability distribution based
on the directives to the test generator, the coverage model, as well as expert domain
knowledge. In practice, very few if any verification engineers have these skills.

An approach based on Markov models that contain user-specified templates for in-
struction sequence generation has been developed in [23]. The Markov model’s para-
meters are adjusted to settings that stress certain activities of interest to verification
through an iterative design-activity directed feedback loop. A simple Markov model
was extended by introducing a cache and some dependency variables to propagate di-
rective dependencies further than one step. This approach approximates the correlation
of directive parameters over several instructions. However, it is weak in controlling the
actual distance of dependency.

In summary, although existing feedback-based CDG approaches achieve promising
results, they have shortcomings which have so far prevented them from being widely
used for functional coverage closure. The major limiting factors are the requirement
of specialised encodings or models on which the algorithms work, the need for non-
verification expertise to set up and maintain the environment, or the use of coverage
models other than functional coverage.

3 ILP-Based Coverage-Directed Stimulus Generation

The directive generation approach introduced here differs from existing feedback-based
CDG approaches by its use of inductive learning from examples, in particular Induc-
tive Logic Programming (ILP), in the CDG engine. ILP [14] is a declarative inductive
learning method. It requires a set of factual examples E and some relational background
knowledge B. ILP will find a single (or multiple) hypothesis H in terms of the relations
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given in B such that (ideally) every positive example in E is covered by H and no
negative example in E is covered. In this context B, E and H are represented as definite
logic programs [15]. The next section provides a more detailed introduction regarding
the application of ILP within a CDG framework.

3.1 Method to Learn Rules for Test Generation

To learn rules suitable for test generation, the examples E for ILP learning are the tests,
which are initially randomly generated, together with their respective coverage data.
Using a first-order logic concept description language each test can automatically be
translated into a relational representation of a sequence of instructions together with a
test identifier and the coverage data associated with this test by analogy with the encod-
ing of Michalski-style trains in [16]. The background knowledge B describes the general
structure of these tests and relationships between test components such as register use,
re-occurrence of registers, e.g. as destination or source, specific sequences of instruc-
tions, relative distance between dependencies, instruction classes etc. The learning task
is to find hypotheses H which represent general rules describing the characteristics of a
test to target a given coverage task. Provided there are enough instances to learn from,
at the end of the learning process the ILP system returns a set of rules containing at
least one rule for each coverage task presented to the system.

The learning task described above produces a set of rules which give rise to direc-
tives that can be used to generate tests structurally similar to the original examples.2

These tests achieve the same amount of coverage as was originally obtained, but with
increased accuracy, a smaller number of tests and hence far fewer simulation runs than
with biased-random generation alone. 3 In addition, the rules give insight into the struc-
ture of the existing test suite and can thus be used to analyse test diversity.

To construct tests that reach coverage holes the learning task needs to be changed to
find rules for coverage clusters which share a degree of similarity with the target cov-
erage hole. The underlying assumption here is that the directive to target the coverage
hole shares a degree of similarity with the directives used to approach similar coverage
tasks. Learning is most effective when the selected clusters have a high coverage rate.
Existing coverage data clustering techniques which can in principle be applied for ILP-
based coverage closure are discussed in [13]. The rules returned by the learning system
for each cluster are then combined to form a directive to target the coverage hole. This
technique can also be used to generate tests that increase the coverage rate of rarely
covered tasks via a different execution path compared to existing tests.

2 Note that the learning output is not, as in traditional machine learning applications, used for
the classification of tests into those which do or don’t reach a given coverage task, but instead
for the automatic construction of tests to target a given coverage task, which is achieved by
generating tests that satisfy the constraints imposed by the rules in the learning output.

3 From discussions with engineers we learned that this can already be valuable in practice, e.g.
for rediscovering directives when subtle changes to the design turn out to have a major effect
on the coverage of tests, often rendering existing test suites completely invalid. Because these
test suites have been generated with an iterative adjustment to the directives, and the history
has been lost, automatically rediscovering the directives would save engineering effort.
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3.2 Integrating ILP into the CDG Framework

The entire CDG feedback loop with ILP-based learning is shown in Fig.3. Input to
the ILP system, such as tests and associated coverage as well as coverage targets, is
sourced directly from the data existing within the standard verification flow. In prac-
tice, the background knowledge can be provided in pre-defined application-class spe-
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Fig. 3. CDG feedback loop with ILP-based CDG engine

cific libraries. Alternatively, to make background knowledge acquisition more flexible
and user-friendly, a domain-specific template-based declarative input language could
be designed for verification engineers, which is automatically translated into the first-
order logic representation used for ILP-based learning. Defining the background knowl-
edge requires as much expertise as is necessary to efficiently use the features of a
state-of-the-art test generation environment such as [2].

The ILP system returns a set of rules for selected coverage tasks or clusters. The
final directive construction stage combines these rules to obtain directives that target
the coverage holes or rarely covered tasks selected for closure.

4 Preliminary Study

This section demonstrates the key aspects of the ILP-based CDG technique on an ex-
ample microprocessor Design Under Verification (DUV).

4.1 Experimental Setup

The DUV is a five-stage pipelined Superscalar DLX [11] with four independent execu-
tion units: Branch Resolve Unit (BRU), Arithmetic Logic Unit (ALU), Multiply Divide
Unit (MDU), and Load Store Unit (LSU). At the entrance of each execution unit, i.e.
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between the decode and the execution stage, is a buffer pipeline register, called Reser-
vation Station, which is used when the data for an instruction is not yet available to
enable the processor to fetch the next instruction. The processor uses a Reorder Buffer,
which is a ring buffer with five entries, to ensure in-order-termination of instructions.

The functional coverage model evaluates the utilisation of the reservation station of
the Superscalar DLX in conjunction with data dependencies between the instruction
waiting in the reservation station and the instruction in the reorder buffer that provides
the data. In particular this model monitors that the reservation station for each pipeline
unit is used by an instruction that is waiting for data on either one of its source registers,
and this data is provided by an instruction that occupies any one of the entries in the re-
order buffer. Hence the coverage model consists of the following three attributes which
are listed together with the set of all possible values for each attribute: Pipeline Unit
(PU) of the utilised reservation station which can take values from {alu, mdu, lsu, bru},
Source Register Location (SRL) which can be one of {rs1, rs2} and Reorder Buffer
Location (RBL) which can be from {0, 1, 2, 3, 4}. The full size of this coverage space
is 4 x 2 x 5 = 40 coverage tasks. However, constraints imposed by the instruction set
architecture and the implementation result in a reduction of the coverage space to the
20 legal coverage tasks shown in the first column of Table 1.

The ILP System used in this experiment is Progol [17]. Test programs together with
their coverage are translated by an automatic procedure into the logic programming lan-
guage Prolog on which Progol works. This translation is based on the three types task,
test and instr which define valid instances of identifiers denoting coverage tasks,
tests, i.e. instruction sequences, and instructions, as well as a fixed set of mnemonics
denoting opcodes and a set of register identifiers. The sequence of instructions is then
described using the following set of relations:

cover(task,test id).
has instruction(test id,instr id).
is followed by(instr id,instr id).
instr has opcode(instr id,mnemonic).
instr has rs1(instr id,reg).
instr has rs2(instr id,reg).
instr has rd(instr id,reg).

A translation of a test program fragment that contains three instructions and covers task
(alu,rs1,3) is given in Fig.4.

The background knowledge provides Progol with an important aid in the learning
process because Progol searches for hypotheses by generalising an example in terms of
the background relations. An example of such a relation is given below. The relation
same rd rs1 d1(I1,I2) specifies under which conditions the destination register of
an instruction I1 is being reused as first source register by the instruction I2 which
immediately, i.e. in distance d1, follows I1.

same rd rs1 d1(I1,I2) :-

is followed by(I1,I2),
instr has rd(I1,R),
instr has rs1(I2,R).

A set of 161 relations similar to the one above has been used as background knowledge
for the experiments.
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add  R4 R4 R1
lw   R5 R0 (1000)

mult R4 R2 R31
test_5

i3
i2
i1

has_instruction(test_5,i1).
has_instruction(test_5,i2).
has_instruction(test_5,i3).

is_followed_by(i1,i2).
is_followed_by(i2,i3).

instr_has_opcode(i1,mult).
instr_has_opcode(i2,add).
instr_has_opcode(i3,lw).

instr_has_rd(i1,r4).
instr_has_rd(i2,r4).
instr_has_rd(i3,r5).

instr_has_rs1(i1,r2).
instr_has_rs1(i2,r4).
instr_has_rs1(i3,r0).

instr_has_rs2(i1,r31).
instr_has_rs2(i2,r1).

cover(alu_rs1_3,test_5).

Fig. 4. Test program fragment and corresponding Prolog representation

Because Progol uses mode-directed inverse entailment to guide the process of gen-
eralisation from examples, a set of mode declarations needs to be provided for the re-
lations which are used in the learning process. The mode declarations constrain the
search, and essentially establish a structural template for the output rules. A total num-
ber of 156 mode declarations constrained the ILP search space in the two experiments
carried out. Representative examples are given below.

modeh: cover(#task,+test)
modeb: has instruction(+test,-instr)
modeb: has opcode(+instr,#opcode)
modeb: same rd rs1 d1(+instr,-instr)
modeb: same rd rs2 d1(+instr,-instr)

4.2 Rules for Existing Tests and Coverage

The first part of the experiment aims to show that, given a set of pseudo-randomly
generated tests together with their coverage, and under the assumption that there are
enough tests to learn from for each coverage task, it is possible to induce rules that
correctly characterise the features of tests to target the achieved coverage. Successful
completion of this experiment confirms the correctness of a fundamental principle of
ILP-based CDG. It also validates the actual ILP setup including the data encoding and
shows whether the background knowledge is fit for purpose. This initial step can be
compared to the rediscovery step described in [10].

The learning was started with the test data available after 500 simulation runs, when
the pseudo-randomly generated tests covered 15 of the 20 coverage tasks which equates
to an overall coverage rate of 75%. Only 57 out of the 500 randomly generated tests
were successful in adding to coverage. The number of successful tests for each coverage
task is given in the second column of Table 1. The total number of induced rules after
ILP learning is summed up in the third column.

To give the reader an example of the learning output, below is one rule which shows
the characteristics of tests that reached coverage task (alu,rs1,2).
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cover(alu rs1 2,Test ID) :-

has instruction(Test ID,I1),
has instruction(Test ID,I2),
instr has opcode(I2,alu),
same rd rs1 d1(I1,I2).

Note that due to the declarative nature of ILP, the above rule can easily be translated
into natural language: “The test must contain an instruction with an opcode of alu type,
and the destination register of the instruction preceding the alu type instruction is used
as the first source register by the alu type instruction.”

The rules obtained from ILP-learning were then used directly as directives for test
generation, i.e. the test generator was given the task to generate a sequence of instruc-
tions that satisfied the constraints contained in the rule body. To evaluate the accuracy
of the resulting tests, the average number of successful tests generated either pseudo-
randomly or on the basis of the ILP induced rules was compared. The fourth and fifth
column of Table 1 contain these numbers which are now termed the hit rate. For ex-
ample, the hit rate of the ILP-based directive for the coverage task (alu,rs1,0) given in
Table 1 is 15%, which means on average 15 out of 100 tests generated to satisfy the rule
body also covered the task in the rule head. In comparison, when the tests are generated
without specific constraints on average 14 out of 1000 tests reached that coverage task.
From the results we computed the lift4 which is shown in the last column of Table 1.

The results show a significant lift (of more than 8) for seven out of the twelve
coverage tasks for which rule learning was successful. No rules were generated for
(mdu,rs1,0), (mdu,rs1,2), and (mdu,rs1,3), because rule learning is a generalisation
process which only works well when there are two or more instances to learn from.
For the two coverage tasks (alu,rs2,2) and (mdu,rs1,4) tests generated from the direc-
tives obtained after rule learning perform worse. The tests used as examples for learning
these two cases show orthogonal aspects in that they represent completely different ap-
proaches to reach the same coverage task. For this reason the ILP system did not find
a rule that accurately generalised the given tests. The problems encountered can be re-
solved in practice by increasing the number of examples to learn from. In the majority
of cases, however, the results show that the ILP system has successfully generalised
the patterns in the existing tests and that test generation from the induced rules gives a
higher hit rate.

4.3 Rules for Conceptually New Tests

The second part of the experiment aims to generate directives that target the remaining
five coverage holes by learning from related coverage clusters. A simple syntax-based
clustering technique which is easily automated is projection [13]. Given a target tuple
(coverage task) in a coverage space, projection replaces one or more of the attribute
values in the target tuple by a wildcard. In this experiment two types of projection were
used. Single projection aggregates successful tests from one dimension of the coverage
task, leaving two values in the tuple, e.g. (alu,rs1,*). Similarly, double projection aggre-
gates tests from two dimensions, leaving only one value in each tuple, e.g. (alu,*,*).

4 The lift was computed as the ratio of the hit rate of tests generated based on the ILP induced
directives over the hit rate of tests generated pseudo-randomly.
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Table 1. Coverage and learning results after 500 simulation runs

Coverage Task Covered Number Random ILP
(PU,SRL,RBL) by Tests of Rules Hit Rate Hit Rate Lift

(alu,rs2,4) 2 2 0.4% 7% 17.5
(alu,rs2,1) 4 4 0.8% 13% 16.25
(alu,rs2,3) 4 3 0.8% 13% 16.25
(alu,rs1,1) 4 2 0.8% 12% 15.00
(alu,rs1,4) 7 5 1.4% 17% 12.14
(alu,rs1,0) 7 4 1.4% 15% 10.71
(alu,rs1,2) 8 4 1.6% 13% 8.13
(alu,rs2,0) 3 1 0.6% 1% 1.67
(alu,rs1,3) 8 5 1.6% 2% 1.25
(bru,rs1,2) 2 1 0.4% 0.4% 1
(mdu,rs1,4) 2 1 0.4% 0.1% 0.25
(alu,rs2,2) 3 2 0.6% 0.1% 0.17

(mdu,rs1,0) 1 - 0.2% - -
(mdu,rs1,2) 1 - 0.2% - -
(mdu,rs1,3) 1 - 0.2% - -
(mdu,rs1,1) 0 - 0% - -
(bru,rs1,0) 0 - 0% - -
(bru,rs1,1) 0 - 0% - -
(bru,rs1,3) 0 - 0% - -
(bru,rs1,4) 0 - 0% - -

Total 57 34 - - -

The learning was again started with the test data available after 500 simulation runs.
For each coverage hole a set of rules was collected from first applying single and then
double projection to the data before learning was performed. Test generation directives
were then constructed manually from these sets of rules by simply conjunctively com-
bining rule bodies and resolving conflicts via the introduction of disjunctions which are
interpreted as random choice during test generation. A remaining challenge is to fully
automate this process of directive construction.

The same method was applied to the five rarely covered tasks from the first part of
the experiment to see whether coverage could be increased. Table 2 shows the results
obtained after test generation from the so constructed directives for the five coverage
holes in the upper half and the five rarely covered tasks in the lower half.

It is encouraging to see that all hit rates have increased significantly for both the
coverage holes and the previously rarely covered tasks. Interestingly, in this experiment
double projection performs better than single projection for coverage hole closure. This
might indicate that, as more dimensions are projected out, more instances are supplied
to the ILP system to learn from, which in turn induces rules that give rise to directives
with higher accuracy. On the other hand single projection outperforms double projection
for the previously rarely covered tasks. This might indicate that when tests that reach
the target coverage tasks do exist, double projection introduces more noise into the rules
than single projection. Further research is needed to better understand these results.
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Table 2. Results for coverage holes (top half) and rarely covered tasks (bottom half)

Random Hit Rate after ILP Hit Rate ILP Hit Rate
Coverage 500 5000 with with

Task Random Random Single Double
(PU,SRL,RBL) Tests Tests Projection Lift Projection Lift

(mdu,rs1,1) - 0.32% 1.00% 3.13 4.13% 12.91
(bru,rs1,0) - 0.08% 1.00% 12.50 2.38% 29.75
(bru,rs1,1) - 0.18% 1.00% 5.56 3.63% 20.17
(bru,rs1,3) - 0.22% 4.00% 18.18 6.38% 29.00
(bru,rs1,4) - 0.06% 0.50% 8.33 1.86% 31.00

(alu,rs2,2) 0.60% 0.56% 10.00% 17.86 8.33% 14.88
(mdu,rs1,0) 0.20% 0.16% 2.00% 12.50 1.50% 9.38
(mdu,rs1,2) 0.20% 0.20% 9.00% 45.00 5.00% 25
(mdu,rs1,3) 0.20% 0.28% 1.67% 5.96 6.75% 24.1
(mdu,rs1,4) 0.40% 0.30% 2.00% 6.67 2.50% 8.33

Figure 1 from the Introduction section compares the coverage progress of this exper-
iment to random simulation. It shows that test generation from single and double pro-
jection methods reached full coverage in 367 and 108 simulations respectively (after
the initial 500 pseudo-randomly generated tests). In total, test generation from single
and double projection methods used 867 and 608 simulations to reach full coverage,
compared to 3914 simulations based on pseudo-random test generation alone. In this
case study, the ILP learning started from the 57 successful tests collected in the first 500
simulations (based on pseudo-randomly generated test). This was sufficient to reach full
coverage within a maximum of another 400 tests to simulate.

To open this interesting application up for the ILP community the 500 randomly gen-
erated tests used in the experiment and the resulting coverage have been made available
on http://www.cs.bris.ac.uk/˜eder/ILP_CDG/. This site also contains
further information on the encoding of these tests and the Progol setup including back-
ground knowledge and mode declarations.

To repeat the entire experiment the complete feedback loop is needed. It includes the
DUV as well as the test generator, the simulator and the coverage analysis component.
Except for the DUV, which we obtained using references in [11], these are commercial
products which require licenses which some of the EDA vendors offer via their higher
education programmes. More information on the setup of the feedback loop used here
can be obtained by contacting the authors.

5 Conclusions

This paper shows how ILP can be applied in the context of functional coverage closure
as part of the CDG engine in a standard CDG feedback loop. The strength and promise
of ILP-based CDG have been demonstrated in a two part experiment. In the first part
rules to be used as test generation directives have been induced from existing tests and
coverage. Test generation from these rules achieved a higher hit rate on their target
coverage tasks than was possible with random test generation. The second part of the
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experiment presents a coverage closure methodology, whereby learning is applied to
selected projections of a coverage hole and learning output is then combined to obtain
a directive that targets this coverage hole.

Clearly, the example case study is small and a larger industry-based trial will be
undertaken shortly on a realistic-sized processor. However, the results obtained provide
an interesting and encouraging starting point for further work to establish ILP-based
CDG alongside existing learning-based techniques.

Various aspects of the ILP-based CDG methodology would benefit from further re-
search. With a focus on learning, one research direction is to explore the use of cluster-
ing methods that are more sophisticated than purely syntactic projection for ILP-based
learning. It is anticipated that ILP techniques can be applied to identify semantically
meaningful coverage clusters. The development of a kernel-based method to define a
meaningful distance metric in this context is one of our next research goals. Another re-
search task is to establish a user-friendly background acquisition methodology for ILP-
based CDG. This is a key requirement for acceptance of this methodology in practice.
We also intend to experiment with ILP systems that use a more descriptive induction
approach compared to Progol, which in practice is mostly used for classification tasks.

In summary, this paper pioneers a methodology that makes CDG an exciting new ap-
plication area for ILP. Although there is more work to be done before ILP-based CDG
is mature enough to be integrated into practical verification environments, it is clear that
ILP-based CDG has important advantages compared to other learning based CDG tech-
niques. First, it seamlessly integrates into an existing verification flow without the need
for encodings or models that are outside the expertise of a professional verification en-
gineer; the learning input can be sourced from existing tests and coverage data directly
via automatic translation procedures. Second, due to the declarative representation of
data, ILP-based CDG requires intuitive input from the verification engineer at setup (for
the background knowledge) and no non-verification expertise is needed. Application-
specific libraries to cover the background knowledge (and the respective mode declara-
tions if Progol is used) can in principle be provided to reduce the engineering input even
further. Third, ILP-based CDG is fully automatic and can target user-defined functional
coverage models. In addition, the transparency of the resulting directive rules, which
are declarative and hence intuitively human readable, gives verification engineers an
insight into the knowledge gained. This is one of the key strengths of ILP compared to
other learning methods and gives ILP-based CDG a strong competitive edge.
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Abstract. Distance-based methods have been a successful family of
machine learning techniques since the inception of the discipline. Ba-
sically, the classification or clustering of a new individual is determined
by the distance to one or more prototypes. From a comprehensibility
point of view, this is not especially problematic in propositional learn-
ing where prototypes can be regarded as a good generalisation (pattern)
of a group of elements. However, for scenarios with structured data,
this is no longer the case. In recent work, we developed a framework to
determine whether a pattern computed by a generalisation operator is
consistent w.r.t. a distance. In this way, we can determine which patterns
can provide a good representation of a group of individuals belonging to
a metric space. In this work, we apply this framework to analyse and
define minimal distance-based generalisation operators (mg operators)
for first-order data. We show that Plotkin’s lgg is a mg operator for
atoms under the distance introduced by J. Ramon, M. Bruynooghe and
W. Van Laer. We also show that this is not the case for clauses with the
distance introduced by J. Ramon and M. Bruynooghe. Consequently, we
introduce a new mg operator for clauses, which could be used as a base
to adapt existing bottom-up methods in ILP.

1 Introduction

Learning from complex data is one of the main challenges in machine learning
(e.g. distance-based and kernel-based methods for structured data [4]). Never-
theless, learning from complex data while preserving comprehensibility is even
more challenging and has mainly been addressed in the area of ILP [7]. Despite
the fact that distance-based methods are quite intuitive and have successfully
been tested in several domains, a model that explains why a new example be-
longs to one class or another does not exist. This is due to the fact that the
information about the matches between two objects (e.g. two molecules) is lost
when these matches are encoded by a number (their distance). Unfortunately,
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this lack of explanatory patterns is incompatible for many application contexts.
For example, in molecule classification it would be very interesting to describe
a cluster of molecules by saying what chemical structures these molecules have
in common instead of saying that they are close to one given prototype. We ad-
dressed the possibility of descriptions of this kind for distance-based algorithms
in [2], where the concept of distance-based binary generalisation operator was
introduced. Basically, the term ‘distance-based’ means that the operator com-
putes patterns that are “consistent” with the distance employed. For instance,
let (Σ∗, d) be the word space defined over the alphabet Σ = {a, b, c}, and let d be
the edit distance. Given the words w1 = cabab and w2 = ababc a distance-based
generalisation operator could compute ∗abab∗, that is, all the words having the
subsequence abab. This pattern somehow shows why d(w1, w2) = 2 because the
subsequence abab has been taken into account in the best match to obtain the
distance. However, this is not the case for another operator computing ∗c∗ (all
the words having the symbol c) since the common sequence c is not considered
to compute the distance.

Unfortunately, to use these generalisation operators in a real context, we need
to be able to generalise more than two elements. In [1], we introduced this idea
for n-ary operators and we also studied the idea of minimality. Minimality is im-
portant to prevent underfitting in the search of patterns that are consistent with
the underlying distance. For instance, the pattern ∗ab∗ obtained by generalising
the words w1 and w2 looks excessively general w.r.t. another “consistent” pattern
such as ∗abab∗ . Although the idea of generality has been studied in depth when
data is represented by means of first-order logic [11], the same does not happen
for other kinds of data, and especially when data is in a metric space. Therefore,
in [1] we proposed a general way to define minimal distance-based generalisation
operators (mg operators). We have applied this framework to several data sorts:
sets, lists, graphs,... (see [3,1]).

In this paper, we focus on first-order objects (atoms and Horn clauses), which
are embedded in a metric space. We show that Plotkin’s lgg [11] is a mg operator
for atoms using the metric defined in [13]. This means that the mg patterns
computed by lgg can be used as a consistent explanation for data which has
been clustered employing this distance. Then, we try to extend this result to
Horn clauses (more precisely, sets of literals), and we show that the direct use of
the lgg for clauses does not yield a distance-based generalisation operator using
the metric defined in [12]. Consequently, we introduce a new mg for clauses. This
sets out a scenario where some (but not all) generalisation operators and some
(but not all) metric spaces used in ILP work well together. This suggests the
applicability of other generalisation operators in ILP (such as the one introduced
in this paper).

The paper is organised as follows. Section 2 introduces the framework for
distance-based generalisation operators and the notion of mg. Section 3 analyses
Plotkin’s lgg as a mg for atoms. Section 4 extends the result to sets of literals (i.e.
clauses), through the definition of a new mg which cannot be the lgg for clauses,
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since the latter is not distance-based. Finally, the last section presents our con-
clusions, possibilities for applications, some open problems, and future work.

2 Distance-Based Generalisation Framework

We present the main notions related to our framework for defining a concept of
generalisation based on distances. For more details see [1].

Our approach aims to define generalisation operators for data embedded in a
metric space (X, d). These operators are denoted as Δ(E), where E is a finite
set of elements (|E| ≥ 2) of X to be generalised. A generalisation computed
by Δ(E) will be expressed by a pattern p belonging to a pattern language L.
In fact, every pattern p represents a set of elements of X and is denoted by
Set(p). Thus, we can say that an element x ∈ X is covered by a pattern p,
if x ∈ Set(p). In the same way, p is a generalisation of E iff E ⊂ Set(p).
For instance, given the strings abb and abc, and the regular pattern ab∗, then
Set(ab∗) = {ab, abc, aba, abb, abaa, ...}, and we say that ab∗ covers the elements
abb ∈ Set(ab∗) and abc ∈ Set(ab∗).

The following definition establishes the relationship between a generalisation
operator defined in a metric space and the underlying distance.

Definition 1. (Distance-based generalisation operator) Let (X, d) be a
metric space and let L be a pattern language. We say that Δ : 2X → L is a
distance-based generalisation operator, if for every finite set E ⊂ X, p ∈ L,
Δ(E) = p, there exists a nerve N(E)1 such that, for every pair of elements x, y
in E which are directly linked in N(E), Set(Δ(E)) includes all the elements z
such that d(x, z) + d(z, y) = d(x, y).

Given a metric space (X, d), we say that, for every x, y, z ∈ X , z is between x
and y if d(x, y) = d(x, z) + d(z, y).

Another issue related to the generalisation operator is to determine when it
performs the least general generalisation (lgg, in short). This is an important
issue if we want the generalisations to “fit” a group of elements as closely as
possible. Although the lgg is a widely studied concept in the field of ILP [8], it
has not been studied when data is not described by means of atoms. Thus, the
following constructions are an alternative and a more general notion of minimal
(least general) generalisation for different sorts of data, when data is in a metric
space.

First, we establish a criterion to determine which pattern is less general, given
two patterns computed by two distance-based generalisation operators Δ(E) and
Δ′(E), respectively. The least general generalisation operator Δ might not be
unique, so we call it minimal. Then, the minimal distance-based generalisation
operator Δ (mg operator, in short) is the one where for every set E and for
every distance-based operator Δ′, the pattern Δ(E) is less general than Δ′(E).
1 Given a metric space (X, d) and a set of undirected connected graphs SG, a nerve

function N : 2X → SG maps every finite set E ⊂ X into a graph G ∈ SG, such that
each element e in E is unequivocally represented by a vertex in G and vice versa.
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In order to formalise our proposal, we could use the inclusion operation be-
tween sets (⊂) as a “mechanism” to compare how general two generalisations
are. In other words, a generalisation Δ(E) is less general than a generalisation
Δ′(E), if Set(Δ(E)) ⊂ Set(Δ′(E)). However, this leads to several problems (see
[1] for details):

1. Most generalisations are not comparable, since neither Set(Δ(E)) ⊂
Set(Δ′(E)) nor vice versa.

2. The inclusion operator between sets (⊂) ignores the underlying distance.
3. The minimal generalisation may not exist for some pattern languages.

Therefore, these drawbacks lead us to introduce a more abstract generality cri-
terion. It is more interesting to find some kind of ‘function’ that assigns a gener-
ality (cost or optimality) value to every pattern, making every pair of patterns
comparable. For this purpose, we introduce a special function, called the cost
function.

Definition 2. (cost function) Let (X, d) and L be a metric space and a pattern
language, respectively. We say that the mapping k : 2X × L → R is a cost
function, if for every pattern p ∈ L and E ⊂ X, such that E ⊂ Set(p) ⊂ X and
Set(p) �= X, then k(E, p) < ∞.

Logically, this definition gives almost complete freedom for how to choose k. For
the metric spaces considered in this paper, if we are looking for minimal patterns,
the idea is that the cost function must depend on the fit (i.e. minimality). For this
reason, we define the cost function as k(E, p) = c(E|p), where c(E|p) measures
how well the pattern p fits the data E. However, for other metric spaces (sets,
graphs, lists, . . . ), more complex cost functions can be defined by also considering
how complicated the pattern is [1], following the MDL/MML principle.

Definition 3. (inclusion-preserving cost function) Let (X, d) and L be a
metric space and a pattern language, respectively. We say that the cost function
c(E|p) is inclusion-preserving if for every E ⊂ X and pair of patterns p and p′

such that Set(p) ⊂ Set(p′) then c(E|p) ≤ c(E|p′).

One interesting point in our approach is that c(E|p) is expressed in terms of the
distance employed. One possible way of defining some instances for c(E|p) is by
using the well-known concept of border of a set2. Intuitively, if a pattern p1 fits
E better than a pattern p2, ∂Set(p1) will somehow be closer to E than ∂Set(p2).

As the border of a set exists in every metric space, several definitions of c(E|p)
can be employed for different sorts of data, as we show in Table 1. It is easy to
show that all of them are inclusion-preserving.

Now, we can introduce the definition of mg operator.
2 We will say that an element e belonging to set A ⊆ X is a border point, if for every

ε > 0, B(e, ε) (where B(e, r) is the closed ball with centre on e and radius r ) is not
totally included in A. In the standard notation, the border of a set A will be denoted
by ∂A.
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Table 1. Some definitions of the function c(E|p)

Sort of data L c(E|p)

Any Any
�

∀e∈E infr∈RB(e, re) �⊂ Set(p)

Any Any
�

∀e∈E supr∈RB(e, re)

Any Any
�

∀e∈E mine′∈∂Set(p)d(e, e′)

Any Set(p) represents a
�

∀e∈E(mine′∈∂Set(p)d(e, e′)
bound set +maxe′′∈∂Set(p)d(e, e′′))

Definition 4 (Minimal distance-based generalisation operator). Let
(X, d) be a metric space, and let Δ be a distance-based generalisation operator
defined in X using the pattern language L. Given a cost function k(·, ·), we say
that Δ is a mg operator for k(·, ·) in L, if for every distance-based generalisation
operator Δ′, then k(E, Δ(E)) ≤ k(E, Δ′(E)), for every finite set E ⊂ X.

In general, deriving the mg operator is complicated because of the high variety
of nerve functions N(·) that can be defined. In some problems, it does not make
sense to explore all the nerve functions (e.g. in clustering), and we might be
interested in computing mg operators relative to one specific nerve function,
namely:

k(E, ΔN(E)(E)) ≤ k(E, Δ′
N(E)(E)), for every finite set E ⊂ X .

Next, we analyse and/or derive mg operators for the specific case of first-order
logic data (atoms and clauses) embedded in a metric space.

3 Minimal Distance-Based Generalisations for Atoms

The goal of this section is to compute mg operators for atoms embedded in a
particular metric space. To do this, a distance function, a pattern language and
a cost function are defined. In what follows, L, denotes a first-order language
defined over the signature 〈C,F , Π,X〉, where C is a set of constants, F (and
respectively Π) is a family that is indexed on N (non negative integers) with Fn

(Πn) being a set of n−adic function (predicate) symbols and X is a (infinite)
denumerable set of variable symbols. In the case of no ambiguity, both predi-
cate and function symbols are referred to as symbols, and variable symbols are
referred to as variables. f/n (and respectively p/n) denotes a function symbol
f ∈ Fn (and respectively p ∈ Πn). Finally, the reader may refer to [5,6] for any
concept about logic programming and inductive logic programming which is not
explicitly defined.

3.1 The Metric Space

The distance function d we are going to employ is defined in [13]. Basically,
this distance returns an ordered pair of integer values (i, j). This pair expresses
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how different two atoms are in terms of function symbols and variable symbols,
respectively. An auxiliary function, the so-called size(e) = (F, V ), is required
to compute d. This function encodes the structure of one atom e. That is, F
is a function that counts the number of function symbols occurring in e, and
V returns the sum of the squared number of occurrences of each variable in
e. Finally, given atoms e1 and e2, d(e1, e2) = [size(e1) − size(lgg(e1, e2))] +
[size(e2)− size(lgg(e1, e2))].

For instance, if e1 = q(a, f(a)) and e2 = q(b, f(X)) and knowing that
lgg(e1, e2) = q(Y, f(Z)), size(e1) = (3, 0), size(e2) = (2, 1), size(lgg(e1, e2)) =
(1, 2), the distance between e1 and e2 is given by the expression: d(e1, e2) =
[(3, 0)− (1, 2)] + [(2, 1)− (1, 2)] = (2,−2) + (1,−1) = (3,−3).

For non-unifiable atoms, the distance is defined by means of introducing an
artificial second-order symbol  , which is considered the most general 3 element,
such that size( ) = (0, 1). Note that a total order relation (lexicographic order),
defined over the set of ordered pairs, is needed to express how far two atoms are
from each other. Given two ordered pairs A = (F1, V1) and B = (F2, V2), A < B
iff F1 < F2 or F1 = F2 and V1 < V2. As the set of tuples are ordered, it permits
us to handle these objects as if they were real numbers. For this reason, all
the definitions of our framework can be automatically extended for this special
case.

In what follows, (Xa, da) denotes the metric space where Xa is the Her-
brand Base with variables induced by the signature, and da denotes the distance
described above.

3.2 The Pattern Language and the Cost Function

The pattern language is the Herbrand base with variables induced by the sig-
nature, that is, L coincides with Xa. For example, let C = {a, b} be a set of
constants, F = {f/1} a set of function symbols, X = {X1, X2, . . .} a denu-
merable set of variables and Π = {p/1, q/1} a set of predicate symbols. Then,
L1 = {p(a, X1), p(X1, a), p(X1, X2), p(f(a), b), . . . q(a, X1), q(X1, a), . . .}. Given
a pattern p, Set(p) denotes all the atoms in Xa which are instances of p. For
example, p(a) ∈ Set(p(X)).

Regarding the cost function, c(E|p) is the first function in Table 1. Clearly, it
is a cost function for (Xa, da) and L since, for a finite set of elements E ⊂ Xa

and a pattern p covering E, c(E|p) = ∞ iff Set(p) = Xa.

3.3 Defining a mg Operator

We proved in [2] that the lgg for two atoms is a binary distance-based gener-
alisation operator for (Xa, da). Taking this previous result into account, we can
demonstrate that, where E is a finite set of two or more atoms, lgg(E) is the
mg for this metric space and this cost function.

3 By general we mean the well-known concept from logic programming.
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Proposition 1. Given the metric space (Xa, da). If L is the Herbrand base
with variables induced by the signature and c(E|p) =

∑
∀e∈E re (being re =

infr∈RB(e, r) �⊂ Set(p)), then Δ(E) = lgg(E) is a mg operator for da, L and
c(E|p).

Proof. First, let us show that lgg(E) performs minimal patterns according to
the cost function. For every generalisation p of E, p ∈ L, such that E ⊂ Set(p),
by definition of lgg, Set(lgg(E)) ⊂ Set(p), and by Definition 3, c(E|lgg(E)) ≤
c(E|p).

Secondly, note that lgg(E) is distance-based. Clearly, for every two elements
ei, ej ∈ E, Set(lgg(ei, ej)) ⊂ Set(lgg(E)). According to Proposition 6 in [2],
lgg(ei, ej) is distance-based in (Xa, da) and so Set(E) contains all the elements
between ei and ej, for every ei and ej . Then, simply defining, for instance, N(E)
as a complete graph, lgg(E) is distance-based.

This result does not necessarily hold when the cost function or even the pattern
language is changed. In [1], we explore the combination of different cost functions
and pattern languages in further detail.

4 Minimal Distance-Based Generalisations for Clauses

From a practical point of view, finite sets of literals (interpreted as clauses) allow
us to express real-world objects more accurately than single literals do. A set
of literals can represent not only the different parts of an object but also the
relationships among them. A clause interprets these literals as a disjunction,
which is usually expressed as a logic implication with a disjunction of all the
positive literals in the consequent (head) and a conjunction of all the negative
literals in the antecedent (body). For instance,

C = {class(X, c1),¬molec(X),¬atom(X, h)}

can be interpreted and represented as: class(X, c1) : −molec(X)∧ atom(X, h)4.
In order to determine mg operators for clauses, we need to establish a distance

function, a pattern language, and a cost function for this sort of data.

4.1 The Metric Space

The distance we are going to use is defined in [12]. This distance is based on
minimal matchings5 over sets and requires the elements of the sets to be em-
bedded in a metric space as well. Given two sets A and B and the elements
a ∈ A and b ∈ B, we say that the ordered pair (a, b) belongs to the matching
αA,B between A and B (a subset of A × B), if αA,B(a) = b. By D(αA,B), we
denote the domain of the matching, that is, D(αA,B) = {a ∈ A : ∃(a, b) ∈ αA,B}.
4 As in Prolog notation, the symbol : − denotes the logic implication symbol ←.
5 A matching from set A to set B is an injective mapping which is not necessarily

defined over all the elements in A.
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By αA,B(A) = {b ∈ B|(a, b) ∈ αA,B ∧ a ∈ A}, we denote the codomain of the
matching.

Thus, given two sets A and B and a matching αA,B, a similarity measure
d(αA,B, A, B) can be defined by summing the distances between the elements
from the ordered pairs belonging to αA,B and adding a penalty M/2 for each
element in A and B that is not included in the matching. More formally,

d(αA,B , A, B) =
∑

∀(ai,bj)∈αA,B

d(ai, bj)+
M

2
(|B−αA,B(A)|+ |A−D(αA,B )|) (1)

Finally, the distance between A and B is given by the optimal (minimal) match-
ing among all the possible ones:

dm(A, B) = min∀αA,Bd(αA,B, A, B) (2)

Unless we say otherwise, (2X , dm) denotes the metric space of sets, and (X, d)
denotes the metric space of the elements of the sets. In our case, the metric space
(X, d) to be considered, which is denoted as (Xl, dl), is obtained by extending
the space Xa and the distance da (defined for atoms in the previous section)
to both positive and negative atoms, i.e. literals. This extension is trivial, since
p(. . .) and ¬p(. . .) are considered incompatible literals. Hence it is like treating
them as being built by different predicates6. According to [12], the constant M
must be greater or equal to the maximal distance between two elements in X in
order to dm(·, ·) satisfies all the axioms of a metric. This restriction forces us to
bound (restrict) the space X . Then, the restriction over Xl will consist of setting
a threshold for the number of symbols in an atom, namely R/2. Only atoms with
less than R/2 symbols will be permitted. These are called bounded literals. Thus,
let X̄l and M = (R, R) be the bounded space and the penalty, respectively.

Example 1. Given the sets A = {a1 ≡ p(g(a), e), a2 ≡ p(f(a), f(b)), a3 ≡ p(a, a)}
and B = {b1 ≡ p(f(b), f(a)), b2 ≡ p(f(a), e))} and according to the distances
among all the atoms, the optimal matching αA,B is {(a1, b2), (a2, b1)}. Then, the
distance between the sets is given by dm(A, B) = d(a1, b2)+d(a2, b1)+ 1

2 (R, R) =
(8,−6) + (R

2 , R
2 ).

The above restriction is finally neither a real nor theoretical problem. A repre-
sentation of a real-life object always requires a finite number of symbols and all
the results concerning (Xl, dl) hold for (X̄l, dl), as the following Proposition 2
shows.

Proposition 2. Proposition 1 (i.e. lgg for bounded literals is a mg) holds for the
metric space (X̄l, dl), where X̄l = {x ∈ Xl : number of non-variable symbols in
x ≤ k}with k being a constant.

Proof. Trivially, for every ei, ej ∈ E ⊂ X̄1, if ek is an element between ei and ej

in X̄l, it is also between them in the space Xl since the distance function is the
6 The lgg of two incompatible literals is undefined [5].
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same; thus, ek ∈ Set(lgg(E)) and lgg(E) is distance-based in X̄l. Also, for every
generalisation p of E, such that E ⊂ Set(p) we have that Set(lgg(E)) ⊂ Set(p)
by definition of lgg and c(E|lgg(E)) ≤ c(E|p) by Definition 3. Thus, lgg for
literals is a mg operator.

Therefore, the metric space for clauses is (2X̄l , dm).

4.2 The Pattern Language and the Cost Function

Thus, we define L as the set of all the logic programs we can define given a
signature. Some examples of patterns could be,

p1 ≡ class(X, c1) : −molec(X), atom(X, Y, h)
class(X, c1) : −molec(X), atom(X, Y, o)

p2 ≡ class(X, c2) : −molec(Y ), atom(Y, Z, c)

The pattern p1 says that a molecule belongs to the class/cluster c1 if it has an
atom of hydrogen or oxygen. Of course, a pattern can also be viewed as a set
of clauses. For example, p1 = {C11 ≡ {class(X, c1),¬molec(X),¬atom(X,, h)},
C12 ≡ {class(X, c1),¬molec(X),¬atom(X,, o)}} and p2 ={C21 ≡ {class(X, c2),
¬molec(Y ),¬atom(Y,, c))}}. From this point of view, patterns can be combined
by means of the union operator (∪). Thus, the pattern p3 = p1 ∪ p2 is p3 =
{C11, C12, C21}. Moreover, each clause C in p is a pattern as well, which is
denoted as {C}.

Finally, given a pattern p ∈ L, Set(p) represents all those clauses in the
metric space 2X̄l which are θ-subsumed by p. Thus, the clause {class(m1, c1),
¬molec(m1),¬atom(m1, h)} belongs to Set(p1).

As for the cost function, c(E|p) is the first function in Table 1. Clearly, it is
a cost function for (2X̄l , dm) and L since for a finite set of elements E and a
pattern p covering E, c(E|p) = ∞ iff Set(p) = 2X̄l .

4.3 Defining mg Operators

Unlike (Xa, da), let us first see that Δ(E) = lgg(E) (where lgg is the least general
generalisation for clauses [11]) is not a mg operator in (2X̄l , dm). Although it
can easily be shown that lgg(E) is a minimal pattern in our framework, lgg(E)
is not distance-based for dm(·, ·). That is, given two clauses A and B there exists
a clause C such that d(A, C) + d(C, B) = d(A, B) and C is not covered by
lgg(A, B) (see Example 2).

Example 2. Given the sets A = {¬p(g(a), e),¬p(f(a), f(b))}, B = {¬p(f(b),
f(a)), ¬p(f(a), e)} and C = {¬p(f(b), f(b)),¬p(g(a), e)}. The optimal mappings
from A to C and from C to B, respectively, are depicted below.

We can easily see that dm(A, B) = (8,−8) = dm(A, C) + dm(C, B). However,

lgg(A, B) = {¬p(f(X), f(Y )),¬p(Z, e),¬p(f(a), T ),¬p(U, V )} ≡
: −p(f(X), f(Y )), p(Z, e), p(f(a), T ), p(U, V )

but C ≡: −p(f(b), f(b)), p(g(a), e) is not θ-subsumed by lgg(A, B).
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(0,0)

(2,−2)

p(f(b),f(a))
(2,−2)

(4,−4)

A

p(f(a),f(b))

p(g(a),e))

p(g(a),e))

p(f(b),f(b))
p(f(a),e))

C B

Fig. 1. The arrows and the labels indicate the optimal mappings between the different
pairs of sets and the distance between the matched elements, respectively

Unfortunately, defining mg operators in this space is not as intuitive as in the
previous section. We tackle the problem in a different way. First, we focus on
determining binary mg operators. Then we study if we can obtain n-ary mg
operators by combining these binary mg operators.

Proposition 3. Let A, B and C be three finite sets of elements. If the equality
dm(A, B) = dm(A, C) + dm(C, B) holds, then there exists an optimal mapping
α′

A,B such that for every pair of elements (ai, bj) in α′
A,B there exists an element

ck ∈ C that satisfies dl(ai, bj) = dl(ai, ck) + dl(ck, bj).

Proof. Let αA,C , αC,B be the optimal matchings used for the computation of
dm(A, C) and dm(C, B), respectively. We can write,

dm(A, C) =
∑

∀(ai,cj)∈αA,C
dl(ai, cj) + M

2 · kαA,C

dm(C, B) =
∑

∀(ci,bj)∈αC,B
dl(ci, bj) + M

2 · kαC,B

where kαA,C (respectively, kαC,B ) denotes the number of elements of A and C
(respectively, C and B) which do not belong to αA,C (respectively, αC,B).

Next, we define the matching α
′

A,B as the composition of the mappings αA,C

and αC,B. That is, α′
A,B(A) = αC,B(αA,C(A)). Keeping α′

A,B in mind, the sum
dm(A, C) + dm(C, B) can be written as,

dm(A, C) + dm(C, B) =
∑

∀(ai,bj)∈α′
A,B

(dl(ai, αA,C(ai)) + dl(αA,C(ai), bj))
+
∑

∀ai∈D(αA,C)−D(α′
A,B) dl(ai, αA,C(ai))

+
∑

∀ci∈D(αC,B)−αA,C(A) dl(ci, αC,B(ci))
+M

2 · kαA,C + M
2 · kαC,B

(3)
The first term on the right-hand side of Equation (3) considers all the ordered
pairs belonging to the matchings that share an element ci ∈ C. The second and
third terms concern those ordered pairs in αA,C and αC,B (respectively), which
were not taken into account by the first term. Finally, the two last terms come
from those unmatched elements.

Next, the chain of inequalities shown in Equation (4) can be derived as follows.
First, we apply the triangle inequality over the first term on the right-hand side
of Expression (3). Second, we remove the second and the third terms. Third,
we apply kαA,C + kαC,B ≥ kα′

A,B
. And, finally, the last inequality is a direct

consequence of the dm(·, ·) definition (see Equation (2)).
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dm(A, C) + dm(C, B) ≥
∑

∀(ai,bj)∈α′
A,B

dl(ai, bj)
+
∑

∀ai∈D(αA,C)−D(α′
A,B) dl(ai, αA,C(ai))

+
∑

∀ci∈D(αC,B)−αA,C(A) dl(ci, αC,B(ci))
+M

2 · kαA,C + M
2 · kαC,B

≥
∑

∀(ai,bj)∈α′
A,B

dl(ai, bj)
+M

2 · (kαA,C + kαC,B )
≥
∑

∀(ai,bj)∈α′
A,B

dl(ai, bj) + M
2 · (kα′

A,B
) = d(α′

A,B , A, B)
≥ dm(A, B)

(4)
The equality d(A, C)+d(C, B) = d(A, B) holds only if all the inequalities (≥) on
the right-hand-side of Equation (4) becomes an equality. Among all these trans-
formations, only the first and the last one are necessary to prove the proposition.
The first inequality turns into an equality if the element ck = αA,C(ai) in the
first term in the right-hand-side of (3) satisfies d(ai, bj) = d(ai, ck) + d(ck, bj),
for every pair (ai, bj) in α′

A,B. The proposition is automatically proved if α′
A,B is

an optimal matching, and if this occurs then the last inequality is transformed
into an equality.

The fact that the lgg(·) for atoms is distance-based suggests a strategy to define
distance-based binary generalisation operators: given two clauses A and B in
2X̄l , we could initially define Δ(A, B) = {{lgg(ai, bj) : (ai, bj) ∈ αA,B}} where
αA,B is an optimal mapping. A distance-based operator must compute a pattern
covering the elements C between A and B. However, if C is between A and B,
then C contains atoms ck which are also between ai and bj , for every (ai, bj) in
an optimal αA,B. Since the lgg for atoms is distance-based for the distance dl,
if ck is between the atoms ai and bj , then ck ∈ Set(lgg(ai, bj)). At first glance,
this definition of Δ seems to be distance-based. However, two drawbacks must
be analysed.

1. Variables occurring in the different lgg(ai, bj) must be independent (i.e. never
repeated). Otherwise, the corresponding pattern might not be distance-based
(for further details see [1]). We deal with this crucial issue at the end of this
section.

2. More than one optimal matching can be given for dm(A, B). Of course, if the
matchings lead to different patterns p1 and p2 such as Set(p1) �= Set(p2),
there will be elements between A and B which do not belong to Set(p1) or
to Set(p2). Hence, all the optimal matchings must be taken into account.
Of course, this has a negative effect on the efficiency of computing distance-
based operators.

Taking both observations above into account, Propositions 4 and 5 characterise
the family of all the distance-based binary generalisation operators. They show
that a binary generalisation operator Δ(A, B) is distance-based if Set(Δ∗(A, B))
⊂ Set(Δ(A, B)), where Δ∗(A, B) represents the union of all patterns pi obtained
by taking all the optimal matchings between A and B into account.
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Proposition 4. Given two clauses A and B in (2X̄l , dl) and the pattern lan-
guage L consisting of all logic programs defined over a signature. The binary
generalisation operator Δ∗(A, B) = p defined as

p =
⋃

∀ optimal αA,B

{lgg(ai, bj) : ∀(ai, bj) ∈ αA,B},

is distance-based, where the repeated variables occurring in different lgg(ai, bj)
are independent.

Proof. From Proposition 3, if a set D is between A and B (i.e. dm(A, B) =
dm(A, D) + dm(D, B)) then there exists an optimal mapping αA,B such that
for every (ai, bj) ∈ αA,B there exists dk ∈ D with dk being between ai and bj .
As the lgg for literals is distance-based, necessarily dk ∈ Set(lgg(ai, bj)) and
D ∈ Set({lgg(ai, bj) : ∀(ai, bj) ∈ αA,B}). Since all the optimal mappings are
taken into consideration, for every set D between A and B, D ∈ Set(p), and
therefore, Δ∗(A, B) is distance-based.

Proposition 5. Given the metric space (2X̄l , dm) and the pattern language L
consisting of all the logic programs defined over a signature. A mapping Δ : 2X̄l×
2X̄l → L is distance-based iff for every pair of clauses A and B, Set(Δ∗(A, B)) ⊂
Set(Δ(A, B)), with Δ∗ being the distance-based operator defined in Proposition 4.

Proof. (→) If Δ(A, B) is distance-based, then it means that for every D between
A and B, D ⊂ Set(Δ(A, B)). Then, for every optimal mapping αA,B, we define
DαA,B as

DαA,B = {lgg(ai, bj) : ∀(ai, bj) ∈ αA,B}

which is clearly between A and B. Then, for every optimal mapping αA,B ,
DαA,B ∈ Set(Δ(A, B)), and therefore Δ∗(A, B) ∈ Set(Δ(A, B)) and by defini-
tion of Set(·), Set(Δ∗(A, B)) ⊂ Set(Δ(A, B)).

(←) Thus, Set(Δ∗(A, B)) is a subset of Set(Δ(A, B)). Since Δ∗(A, B) is
distance-based, automatically Δ(A, B) is distance-based.

Now, we must determine the mg binary operator. It is direct from Proposition 5
and Definition 3, since, for every distance-based operator Δ(A, B) and for every
pair of elements A and B, we know that Set(Δ∗(A, B)) ⊂ Set(Δ(A, B)) and
therefore, c({A, B}|Δ∗(A, B)) ≤ c({A, B}|Δ(A, B)). Then, Δ∗(A, B) is the mg.

Given that the patterns pi can be combined by means of the union operator,
a distance-based operator can be defined for more than two elements by defining
a distance-based binary operator, namely Δ′, and fixing a nerve-function N(·).
Given the set E = {e1, . . . , en}, ΔN(E)(E) =

⋃
∀(ei,ej)∈N(E) Δ′(ei, ej).

The distance-based operator which is minimal can be determined by explor-
ing all the possible nerves N(E) for a set of elements E. On the other hand, we
may only be interested in computing the mg relative to a specific nerve func-
tion. Then, Proposition 6 states that if Δ′ = Δ∗ in the expression above, then
ΔN(E)(E) is a mg that is related to a nerve function N(E).
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Proposition 6. Let Δ∗(A, B) be the binary generalisation operator introduced
in Proposition 4 and let c(E|p) =

∑
∀e∈E re (with re = infr∈RB(e, r) �⊂ Set(p))

be the cost function. Then

ΔN(E)(E) =
⋃

∀(ei,ej)∈N(E)

Δ∗(ei, ej)

is a mg operator that is related to the nerve function N(E).

Proof. We will proceed by contradiction. Let us suppose that ΔN(E) is not mg.
Then there exists a distance-based Δ′

N(E) such that c(E|Δ′
N(E)) < c(E|ΔN(E)).

We define a binary distance-based operator Δ′′ restricted to all the pairs (ei, ej)
∈ N(E), such that Δ′′(ei, ej) = Δ′

N(E)(E) = p. But according to Proposition 5,

Set(Δ∗
N(E)(ei, ej)) ⊆ Set(Δ′′(ei, ej)) = Set(Δ′

N(E)(E))

As occurs for every (ei, ej) ∈ N(E), Set(ΔN(E)(E)) ⊂ Set(Δ′
N(E)(E)), and,

consequently, Δ′
N(E) cannot be mg.

Before concluding, note that a pattern computed by a mg cannot contain re-
peated variables in the different lgg(ai, bj) from the same clause. On the one
hand, this makes sense since the metric does not capture the semantic of repeated
variables occurring in different atoms. Hence, for the sets A = {p(a), q(a)},
B = {p(b), q(b)}, and C = {p(c), q(d)}, dl(A, B) = dl(A, C) when, intuitively,
B should be more similar to A. This is a strong constraint to express some
real-world properties. However, this concerns only the mg operator. It does not
mean that distance-based operators cannot contain repeated variables in differ-
ent atoms in general. For instance, Proposition 5 suggests that we could adapt
a bottom-up ILP inference algorithm to take the pattern (clauses) computed by
the mg as input. The output of the algorithm is a more general pattern than the
input pattern. It is also distance-based and contains repeated variables among
different atoms. Furthermore, this fact indicates that some adaptations of the
ILP algorithms can be viewed as distance-based operators.

5 Conclusions and Future Work

This work develops the notion of mg operator for every sort of data that is em-
bedded in a metric space. Here we include a definition of the framework, following
the main ideas explained in [1] in order to address the minimal generalisation
operators for some first-order objects.

We have shown that Plotkin’s lgg can be seen as a particular case of this
setting because the classical lgg for atoms is a mg operator w.r.t. the metric
space defined in [13] and a specific (but simple) cost function. We showed this
result in [2], but only as a binary operator and without the notion of minimality.
The notion of cost function, which is exclusively defined in terms of distances,
completes the connection between the concepts of distance, pattern and gener-
alisation that we established in previous works. Furthermore, in this work, we
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have suggested that different mg operators for atoms can be obtained by chang-
ing the cost function, which can be an alternative to lgg for redesigning existing
ILP methods or for deriving new ones. As for clauses, Plotkin’s lgg has been
shown not to be a mg operator for the particular metric space derived from the
distance introduced by [12]. Due to the complexity of this metric space, a new
mg operator relative to one specific nerve function has been introduced. Other
distances, cost functions and pattern languages have also been studied (see [1]).
For instance, Plotkin’s lgg for atoms is not distance-based w.r.t. the distance
introduced in [9]. This is an example that some distances are more appropriate
than others in a logic context.

The applicability of the framework and the new lines of research are numerous.
First, we think that the new mg operators (and the new understanding of the
lgg as a distance-based operator) can be useful to redefine, reunderstand, and
cross different methods and ideas within ILP. For instance, some bottom-up ILP
methods (some of which have almost been forgotten since the early nineties)
can be adapted to work with newly derived mg operators, as we outlined at
the end of the section above. Furthermore, the adapted ILP methods would be
distance-based operators. For instance, some size measures for atoms and clauses
(see Section 14.9 in [10]) could be used for the cost function in a similar way as
they were used in the context of refinement. Second, distance-based mg would
be a good link to extend ILP techniques outside ILP, since we have defined
them for many other data types: lists, trees, graphs, sets (see [1] [3]). Specif-
ically, bottom-up ILP methods could by adapted to other kinds of complex
objects (not necessarily first-order). For instance, we are currently investigat-
ing the possibility of applying ILP bottom-up methods of this kind to lists or
graphs. Third, we think that provided that we have an adequate mg operator (as
some of the ones studied or derived in this work), we could easily adapt tradi-
tional distance-based techniques to ILP such as clustering techniques (k-means,
minimum-spanning tree, etc.) or classification techniques (k-nn) in a more so-
phisticated way than has been done to date. In other words, we can turn these
techniques from instance-based techniques to model-based techniques.

One of the specific issues that must be addressed for any new mg is, logically,
its efficiency. In some cases, if the mg is distance-based, but computationally
expensive to find, we might need to find heuristics or approximations. Some
of these approximations (as we mentioned in the specific case of the mg in
Section 4) consist of making one optimal matching instead of all the possible
optimal matchings between two elements. We have explored this possibility for
lists (see [1]) by introducing the notion of pseudo distance-based operator. How-
ever, it is important to highlight that, in our framework, the mg operators are
based on a cost function. This is more flexible than when the mg operator is
solely based on the notion of generalisation or inclusion. If all the distances are
pre-computed between elements, the computation of the mg can be speeded up.

We are currently adapting classical (and, for the moment, simple) machine
learning techniques to our framework, such as a nearest-neighbour classifier
based on mg for several data sorts or a distance-based decision tree.
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Abstract. A consequence of ILP systems being implemented in Pro-
log or using Prolog libraries is that, usually, these systems use a Prolog
internal database to store and manipulate data. However, in real-world
problems, the original data is rarely in Prolog format. In fact, the data is
often kept in Relational Database Management Systems (RDBMS) and
then converted to a format acceptable by the ILP system. Therefore, a
more interesting approach is to link the ILP system to the RDBMS and
manipulate the data without converting it. This scheme has the advan-
tage of being more scalable since the whole data does not need to be
loaded into memory by the ILP system. In this paper we study several
approaches of coupling ILP systems with RDBMS systems and evaluate
their impact on performance. We propose to use a Deductive Database
(DDB) system to transparently translate the hypotheses to relational
algebra expressions. The empirical evaluation performed shows that the
execution time of ILP algorithms can be effectively reduced using a DDB
and that the size of the problems can be increased due to a non-memory
storage of the data.

Keywords: Implementation, Performance, Deductive Databases.

1 Introduction

The amount of data collected and stored in databases is growing considerably
in almost all areas of human activity. A paramount example is the explosion
of bio-tech data that, as a result of automation in biochemistry, doubles its size
every three to six months [1,2]. Most of this data is structured and stored in rela-
tional databases and, in more complex applications, can involve several relations,
thus being spread over multiple tables. However, many important data mining
techniques look for patterns in a single relation (or table) where each tuple (or
row) is one object of interest. Great care and effort has to be made in order
to store as much relevant data as possible into a single table so that proposi-
tional data mining algorithms can be applied. Notwithstanding this preparation
step, propositionalizing data from multiple tables into a single one may lead to
redundancy, loss of information [3] or to tables of prohibitive size [4].

On the other hand, Inductive Logic Programing (ILP) systems are able to
learn patterns from relational data. However, ILP systems usually store and
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manipulate data in Prolog databases as a result of being implemented in Pro-
log [5,6,7] or using Prolog libraries [8]. The approach often followed by ILP prac-
titioners is to convert the data in the relational database to a format acceptable
by the ILP system. A consequence of learning from Prolog databases is that the
data is loaded into main memory, thus limiting ILP ability to process larger data-
sets. Although ILP systems load the data into main memory, they are known as
being computationally expensive. To find a model, ILP systems repeatedly ex-
amine sets of candidate clauses, which in turn involves evaluating each clause on
all data to determine its quality. On complex or sizable applications, evaluating
individual clauses may take considerable time, and thus, to compute a model,
an ILP system can take several hours or even days. Efficiency and scalability are
thus two of the major challenges that current ILP systems must overcome.

In this work we show how an ILP system can be transparently coupled with
a Relational Database Management System (RDBMS) by using a Deductive
Database (DDB) system, and how this coupled environment provides an ex-
cellent framework for the efficient and scalable induction of logic programs. In
particular, we will use April [9] as the ILP system and MYDDAS [10] as the
DDB system. By using a DDB system, the ILP system is able to process larger
databases, since the memory issues disappear, and can transparently exploit
advanced features of relational databases, such as powerful indexing schemes,
query optimization, efficient aggregation and joining algorithms. In particular,
we describe mode based indexing, an optimization that many ILP systems may
easily perform.

The idea of coupling ILP with relational databases is not new [11,12,13,14],
but very little has been reported about the impact on performance of learning
from a relational database. In fact, there is a general idea that ILP systems
become slower when coupled to a RDBMS. To clarify this, we investigate the
effectiveness of several high-level strategies of coupling an ILP system with a
DDB. We wish to evaluate the potential performance gains that result from
learning from a relational database as opposed to the more traditional approach
of learning from Prolog databases. In the experiments we used four artificially
generated problems [15] that allowed us to perform the evaluations while con-
sidering different data-set sizes and hypotheses complexity (number of joins in
a hypothesis).

The remainder of the paper is organized as follows. First, we revise the back-
ground concepts of relational algebra operations in Prolog and introduce the
problem of coverage computation in ILP. Then, we describe our approaches to
couple ILP with DDB and discuss some implementation details. Next, we present
the results of an empirical evaluation on the performance of the proposed ap-
proaches. We end by discussing related work and by outlining some conclusions.

2 Preliminaries

In this section we revise relevant concepts of relational algebra and the encoding
of its operations in Prolog syntax. We also introduce the problem of coverage
computation in the context of ILP systems.
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2.1 Prolog and Relational Algebra

If we abstract the notion of order on the clauses of a Prolog predicate and re-
strict these clauses to ground facts with atomic arguments, then this predicate is
equivalent to a database relation. Database relations are queried by RDBMS us-
ing relational algebra. In [16], Codd defined five primitive operations of relational
algebra: selection, projection, cartesian product, set union and set difference. We
can define Prolog predicates which are equivalent to these relational algebra
operations. Assuming that Q and R are database relations with an arbitrary
number of attributes, and that q and r are their associated Prolog predicates,
Table 1 defines a new relation P and a new Prolog predicate p, based on the five
primitive relational algebra operations and their equivalent encoding in Prolog
syntax.

Table 1. Relational algebra operations in Prolog

Selection
P ← σ$i=val(Q)
p(X1, ...,Xi−1, val, Xi+1, ..., Xn) : − q(X1, ...,Xi−1, val, Xi+1, ...,Xn).

Projection
P ← π$i(Q)
p(Xi) : − q(X1, ...,Xi, ...,Xn).

Cartesian
Product

P ← Q × R
p(X1, ...,Xn, Y1, ..., Ym) : − q(X1, ..., Xn), r(Y1, ..., Ym).

Set Union
P ← Q ∪ R
p(X1, ...,Xn) : − q(X1, ..., Xn).
p(X1, ...,Xn) : − r(X1, ..., Xn).

Set
Difference

P ← Q − R
p(X1, ...,Xn) : − q(X1, ..., Xn), not r(X1, ...,Xn).

An important difference between Prolog and relational algebra is that the
Prolog’s inference engine operates tuple-at-a-time, while the database manager
operates set-at-a-time. To get the Prolog system to compute the equivalent
of the relational algebra operations of Table 1, we need to use the findall/3
built-in: findall(p(X1, ..., Xn), p(X1, ..., Xn), L), which will force backtracking
to occur on goal p(X1, ..., Xn), the second argument, collecting all solutions as
p(X1, ..., Xn) terms, the first argument, in list L.

Codd’s relational algebra has been extended to include higher-order opera-
tions, such as aggregate functions that compute values over sets of attributes.
Virtually every database system supports the following aggregate functions over
relations: sum(), avg(), count(), min() and max(), which compute the sum,
the average, the number, the minimum and the maximum of given attributes.
In relational algebra, aggregation operations are represented by groupFfun(Q),
where F is the aggregation operator, group is an optional list of attributes of
relation Q to be grouped and fun is the list of aggregation functions. For ex-
ample, a relational algebra expression returning a relation with a single tuple
representing the number of values for the ith attribute of a relation Q would be:
P ← Fcount $i(Q).
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Because of its tuple-at-a-time nature, Prolog is particularly inefficient for
higher-order computations. Coupled DDB systems thus try to transfer these
computations to the database manager. In the context of DDB the logic syntax
to encode the aggregation operations of relational algebra is as follows:

p(Xi, ..., Xj , Y1, ..., Ym) : − Y1 is Xi
∧...∧Xj

∧fun1(Xk, q(X1, ..., Xk, ..., Xn)),
...,

Ym is Xi
∧...∧Xj

∧funm(Xl, q(X1, ..., Xl, ..., Xn)).

where the Xi, ..., Xj are the grouping attributes and the Y1, ..., Ym are the aggre-
gate values associated to the fun1, ..., funm aggregation functions. The above
example of P ← Fcount $i(Q) would be written in Prolog as:

p(Y1) : − Y1 is count(Xi, q(X1, ..., Xi, ..., Xn)).

Common database queries typically combine several primitive relational al-
gebra operations. For instance, a natural join such as P ← Q ��$i=$j R is
implemented by a composition of cartesian product, selection and projection
operations: P ← πX1,...,Xn,Y1,...,Yj−1,Yj+1,...,Ym(σ$i=$(n+j)(Q×R)).

An equivalent composition results in the following Prolog clause to implement
the same natural join:

p(X1, ..., Xi, ..., Xn, Y1, ..., Yj−1, Yj+1, ..., Ym) : − q(X1, ..., Xi, ..., Xn),
r(Y1, ..., Yj−1, Xi, Yj+1, ..., Ym).

Every composition of relational algebra can be expressed in Prolog, while the
reverse is not true. The subset of Prolog, extended with the findall/3 predicate,
equivalent to relational algebra is referred as Datalog [17]. Prolog predicates
which involve either direct or indirect recursion cannot be expressed in relational
algebra. Relational tuples also cannot represent Prolog facts containing unbound
or compound arguments.

2.2 Coverage Computation in ILP

The normal problem that an ILP system must solve is to find a consistent and
complete theory, from a set of examples and prior knowledge, the background
knowledge, that explains all given positive examples, while being consistent with
the given negative examples [18]. In general, the background knowledge and the
set of examples can be arbitrary logic programs.

To derive a theory with the desired properties, many ILP systems follow some
kind of generate-and-test approach to traverse the hypotheses space [8]. A general
ILP system spends most of its time evaluating hypotheses, either because the
number of examples is large or because testing each example is computationally
hard. For each of these hypotheses the ILP algorithm computes its coverage, that
is, the number of positive and negatives examples that can be deduced from it.
If a clause covers all of the positive examples and none of the negative examples,
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then the ILP system stops. Otherwise, an alternative stop criteria should be
used, such as the number of hypotheses evaluated, or the number of positive
examples covered, or time. A simplified algorithm for the coverage computation
of a clause is presented next in Fig. 1.

compute_coverage(Clause,ScorePos,ScoreNeg) :-
assert(Clause,Ref),
reset_counter(pos,0), reset_counter(neg,0),
(

select_positive_example(Goal), once(Goal),
incr_counter(pos), fail

;
true

),
(

select_negative_example(Goal), once(Goal),
incr_counter(neg), fail

;
true

),
counter(pos,ScorePos), counter(neg,ScoreNeg),
erase(Ref).

Fig. 1. Coverage computation

The compute coverage/3 predicate starts by asserting the clause being evalu-
ated1 and by resetting a counter pos. Next, the select positive example/1 pred-
icate binds variable Goal to the first positive example, which is then called using
the once/1 primitive. The once/1 primitive is used to avoid backtracking on
alternative ways to derive the current goal. If the positive example succeeds,
counter pos is incremented and we force failure. Failure, whether forced or un-
forced, will backtrack to alternative positive examples, traversing all of them
and counting those that succeed. The process is repeated for negative examples
and finally the asserted clause is retracted.

3 Coupling Approaches

In this section we describe several approaches to divide the coverage computa-
tion work between the logic system and the relational database system. We will
describe the coupling approaches starting with the base coverage computation,
and then incrementally transferring computational work from the logic system
to the database system.

3.1 Selection Approach

On a typical coupled DDB system, the tuples defined extensionally in database
relations are transparently mapped to Prolog predicates by using a directive
such as:

: − db import(rel name, pred name, conn).
1 Here we consider the general case where the clauses being evaluated can be recursive.
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This directive is meant to associate a predicate pred name with a database re-
lation rel name that is accessible through a connection with the database system
named conn. What this directive does is implementing the communication layer
between the Prolog engine and the database system, which involves the trans-
lation of queries written in Prolog syntax to their equivalent relational algebra
expressions, as explained in subsection 2.1. Typical interfaces with relational
database systems do not include support for relational algebra expressions in
their textual form, requiring their further translation to SQL, the lingua franca
of database systems.

Based on the above directive and assuming that rel name is a two field rela-
tion, the query goal pred name(val, A) will be translated to the following rela-
tional algebra expression: σ$1=val(rel name), which is in turn translated to the
SQL expression:

SELECT val, A.attr2 FROM rel name A WHERE A.attr1 = val;

where attr1 and atrr2 are the attributes names of relation rel name. This expres-
sion is then sent to the database system and the obtained result set is navigated
tuple-at-a-time using backtracking. Note that the database system executes the
selection operation, returning only the tuples that unify with the logic goal, thus
freeing the logic system from the unification operation. This selection approach
requires just the declaration of the background knowledge and the positive and
negative examples predicates through db import/3 directives. Coverage compu-
tation is done exactly as in Fig. 1.

3.2 Join Approach

A fundamental improvement to the selection approach is to transfer the com-
putation of the join of the several database goals in the body of a clause to the
database system. Prolog efficiency is compromised by the strict execution mech-
anism of SLD-resolution, while the query optimiser of database systems is able
to use goal-reordering and extended indexing schemes to improve the efficiency
of join computation.

In order to transfer the join computation to the database system, the inter-
face of the DDB system must group together conjunctions of extensional goals
and Prolog built-ins that can be expressed in relational algebra. This can be
done automatically during compilation using a simple program analysis, or can
be done explicitly by the user. Currently, MYDDAS follows the later approach,
through a db view/3 directive:
: − db view(view(Ai, ..., Aj), (db goal1(A1, ..., An), ..., db goalm(Ak, ..., Al)), conn).

where the first argument specifies the attributes to be fetched from the database,
the second argument specifies the selection restrictions and join conditions, and
the third argument identifies the connection with the database system.

The compute coverage/3 predicate still works as before, but instead of asserting
the given clause, it now creates a view for the goals in the body of the clause and
then replaces the clause’s body with the created view. For example, considering the
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clause ‘h(A) : − p1(A, B), p2(B).’, where p1/2 and p2/1 represent the database
relations r1 and r2, the compute coverage/3 predicate now creates the view:

db view(view(A), (p1(A, B), p2(B)), conn)

and asserts the clause ‘h(A) : − view(A).’. The relational algebra expression
generated for the view when evaluating a given example, e1 for instance, is:

π$1((σ$1=e1(r1)) ��$2=$1 r2)

3.3 Reduced-Join Approach

Some very important issues in the coverage algorithm of Fig. 1 arise for the
once/1 primitive: (i) the coupling interface must support deallocation of queries
result sets when the once/1 primitive prunes the search space [19]; (ii) instead of
unnecessarily computing all the alternative solutions, the database system only
needs to compute the first tuple of the join.

In order to reduce the scope of the join computed by the database system,
we should push the once/1 primitive to the database view. The asserted clause
should include an once/1 predicate on the view definition and the DDB inter-
face should be able to translate it to a relational algebra expression that can
be efficiently executed by the database system. We introduce an extension to
the relational algebra selection operation, σ(conditions,rows)(R), where the rows
argument defines a limit to the number of tuples that the selection operation
should return. In particular, if this selection operation is composed with a join
operation, the query optimizer can prune the join computation as soon as the re-
quired number of tuples is reached. With this approach, the compute coverage/3
predicate can be used as before and we can drop the once/1 call from its code.
For our previous example, the view is now:

db view(view(A), once(p1(A, B), p2(B)), conn)

and the relational algebra operation generated when evaluating example e1 is:

π$1((σ($1=e1,1)(r1)) ��$2=$1 r2)

Based on this relational algebra expression, the MYDDAS interface is able to
send the following SQL query to the database system:

SELECT A.attr1 FROM r1 A, r2 B

WHERE A.attr1 = e1 AND A.attr2 = B.attr1 LIMIT 1;

3.4 Aggregation Approach

A final transfer of computation work from the logic system to the database system
can be done for the aggregation operation which counts the number of examples
covered by a clause. The compute coverage/3 predicate uses extra-logical global
variables toperformthis countingoperation,as itwouldbetoo inefficientotherwise.
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To transfer the aggregation work to the database system we need to restrict
the theories we are inducing to non-recursive theories, where the head of the
clause can not appear as a goal in the body. With this restriction, we can drop
the assertion of the clause to the program code, include the positive or negative
examples relation as a goal co-joined with the goals in the body of the current
clause, and include a count/2 predicate on the view definition for the attributes
holding the positive or negative examples. Again, the join should only test for
the existence of one tuple in the body goals for each of the examples, using the
once/1 primitive on the view definition. For our example, the view would be:

db view(view(C), C is count(A, (h(A), once(p1(A, B), p2(B)))), conn)

The composition of these relational operations results in the following rela-
tional algebra expression:

Fcount $1(r0 ��$1=$1 (σ(ε,1)(r1) ��$2=$1 r2))

where r0 is the database relation associated with h/1 and ε represents the empty
condition. We have extended the MYDDAS interface in order to generate an
efficient translation to SQL for such expressions. The above view generates the
following SQL expression:

SELECT COUNT (A.attr1) FROM r0 A

WHERE EXISTS (SELECT ∗ FROM r1 B, r2 C

WHERE A.attr1 = B.attr1 AND B.attr2 = C.attr1 LIMIT 1);

Although the ‘LIMIT 1’ keyword may seem redundant for an existential sub-
query, our experiments showed that MySQL performance is greatly improved if
we include it on the sub-query. On the other hand, the ‘LIMIT 1’ suffix has
no impact on performance when using an Oracle RDBMS, as we shall see. This
observation shows that MySQL query optimizer is failing somewhere on its task.

The four coupling approaches, Selection, Join, Reduced-Join and Aggregation,
are gradually transferring computation from the logic system to the database
system. In a future approach we plan to further transfer computation work to
the database system, implementing a many-at-once optimization, as illustrated
by the query packs technique [20]. Not only do some database systems per-
form caching of queries, but we can also extend the Prolog-to-relational-algebra
translation in order to be able to send packs of logic queries to the database sys-
tem and have their coverage computed by the database system, at once, using
relational grouping operators optimized for redundancy elimination.

4 Implementation

The coupling approaches described above were implemented in the April ILP
system [9] coupled with the DDB system MYDDAS. Both April and MYDDAS
systems run on top of the Yap Prolog engine.
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Being able to abstract the Prolog to SQL translation, task performed by MY-
DDAS, we concentrated in implementing the various coupling approaches, with
different distributions of work between the logic system and the database sys-
tem, and considered some optimizations such as mode-based indexing, presented
in the next subsection. The integration of both systems required minor changes
to April’s code and, in particular, to its clause evaluation component.

The impact for the ILP practitioner of using a DDB as opposed to using
the Prolog database is kept to a minimum. The user first indicates, through
a configuration option, which coupling approach wants to use, and then only
needs to provide information regarding the database where the data resides
(name, user, password, and host) and, if using the aggregation approach, the
names of the tables of the positive and, if available, negative examples. When
the examples are stored in tables, the ILP system automatically creates new
tables for each class of examples with extra attributes that are used to keep
temporary information generated during execution.

4.1 Mode-Based Indexing

ILP systems often use some kind of input/output mode declarations to supply
information concerning the arguments of each predicate that may appear in the
hypotheses [21,22]. These declarations specify if an argument of a predicate is
intended to be a constant, an input or an output argument. Although the mode
declarations are usually provided by the user, they can be also automatically
extracted from the background knowledge [23].

There are two major advantages in the use of mode declarations. First, the
ILP system can guarantee termination by ensuring that the hypotheses it gen-
erates are accordingly to the mode. Second, ILP systems can use the mode
information to automatically create indexes in the database in order to optimize
query execution. We proceed as follows. For each mode declaration (that affects
some table) we create two indexes. The first index is created on the attributes
indicated as constants or input arguments. The rationale is that all hypotheses
(queries) generated will be mode conform and, thus, the join and projection op-
erations in the queries will always be performed over the constant and/or the
input attributes. The second index is created on all the attributes of the corre-
sponding table (predicate). In the following section, we show that this automatic
index creation, when used with the aggregation approach, reduces the execution
speed significantly.

5 Performance Evaluation

We have performed a set of experiments in order to evaluate our work. The goals
of the experiments were two-fold:

– Empirically compare the four coupling approaches.
– Assess if our proposal of coupling ILP with a DDB can improve the efficiency

and scalability of ILP systems.
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5.1 Materials and Methodology

We have used four artificially generated problems [15]. Table 2 characterizes the
problems in terms of number of examples, number of relations in the background
knowledge, and number of tuples. All experiments were performed using MY-
DDAS 0.9, coupling Yap 5.1.0 with MySQL Server 4.1.5-gamma, on a AMD
Athlon 64 Processor 2800+ with 512 Kbytes cache and 1 Gbyte of RAM. Yap
performs indexing in run-time on all arguments.

Table 2. Problems characterization

Problem # Examples # Relations # Tuples
p.m8.l27 200 8 321,576
p.m11.l15 200 11 440,000
p.m15.l29 200 15 603,000
p.m21.l18 200 21 844,200

A set of 688 clauses was generated for each artificial problem. The clauses
were randomly generated and equally distributed by length, ranging from 1 to
the number of relations available in the data-set. We used the April ILP system
to randomly generate the sets of clauses.

Since the weight of coverage computation on the total execution time of an
ILP system varies accordingly to the system or algorithm used, we have chosen
to implement the approaches for coverage computation through simple Prolog
programs2. This allows us to perform a comparison independent of the ILP sys-
tem and to correctly measure the time spent in coverage computation. Using
April’s execution time as the measure does not allow us to do a precise perfor-
mance evaluation since the gains would vary, depending on the search algorithm
used and on the optimizations that April can perform during run-time.

5.2 Comparing the Coupling Approaches

Table 3 shows the best execution time of 5 runs, in seconds, for each problem. For
the basic ILP approach, the clauses were evaluated using Yap with indexing on
the first argument (IFA) and using Yap with indexing on all arguments (IAA).
For the coupling approaches, the clauses were evaluated using mode-based index-
ing (MBI) as described in subsection 4.1. For comparison purposes, we also show
the execution time for the Aggregation approach without mode-based indexing.
Without mode-based indexing the relational tables still include indexing, but
only based on the primary indexes associated to the primary keys.

A first observation should be made regarding the impact in the execution time
when using full indexing in Prolog (Basic ILP + IAA) as opposed to use indexing
solely in the first argument (Basic ILP + IFA). We will use the times taken by
the Basic ILP + IAA as the base times, although full indexing is available in
only a few Prolog engines.
2 Available from http://www.ncc.up.pt/MYDDAS/ilpddb.html

http://www.ncc.up.pt/MYDDAS/ilpddb.html
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Table 3. Performance for the different approaches (execution time in seconds)

Approach
Problem

p.m8.l27 p.m11.l15 p.m15.l29 p.m21.l18
Basic ILP + IFA 149 409 >1 day >1 day
Basic ILP + IAA 15 50 33,972 >1 day
Selection + MBI 35,583 >1 day >1 day >1 day
Join + MBI n.a n.a n.a n.a
Reduced-Join + MBI 99 628 2,975 33,229
Aggregation >1 day >1 day >1 day >1 day
Aggregation + MBI 5 14 251 734

The core time of communication between the ILP system and the database
system dilutes as we increase the computation work of the database system.
For problems involving relations with thousands of tuples the Selection + MBI
approach is unrealistic. This approach does not transfer any computation work
to the database system, other than selecting tuples from individual relations.
Furthermore, the number of queries generated is a factor of the number of tuples
in each relation, which explains execution times of days or weeks for problems
larger than p.m8.l27.

For the Join + MBI approach, as expected, we could not obtain the execution
times for any problem, due to insufficient memory to compute the joins involved.
Note that this approach does not implement the once/1 optimization, therefore
the entire join is computed instead of just the first tuple. MySQL ran out of
memory when trying to compute a join of several relations, each with thousands
of tuples.

For the Reduced-Join + MBI approach the scope of the join is now reduced
to compute just the first tuple. For problem p.m11.l15 the slow-down factor
compared to the Basic ILP + IAA approach is explained by the number of
queries that are sent to the database system, one for every positive and negative
example. This means that a total of 200 queries (the number of positive and
negative examples) are sent to the database system for each of the 688 clauses.
As the size of the joins grows larger, as with p.m15.l29, the time spent in com-
munication of the queries becomes irrelevant compared to the time taken for
computing the joins. This and the huge amount of backtracking performed by
the Basic ILP + IAA approach for the two largest artificial problems, as the Ba-
sic ILP + IAA approach runs on a tuple-at-a-time form against the set-at-a-time
database approaches, explains the speedup obtained with this approach.

On the Aggregation approach only two queries per clause are sent to the
database system, one to compute positive coverage and one to compute negative
coverage. Since all the coverage computation work is transferred to the database
system, the core time of sending and storing the result set for the two queries
is insignificant. However, the results are disappointing due to the lack of useful
indexes on the tables.

The results obtained with the Aggregation + MBI approach are very good.
The performance gains over the Basic ILP + IAA approach are clear: a 2.8
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speedup for p.m8.l27, and a 3.4 speedup for p.m11.l15, and a 135 speedup for
p.m15.l29. These results show a clear tendency for higher speedups as the size
of the problems grow.

In conclusion, the Aggregation + MBI approach clearly outperforms the other
approaches. It significantly reduces the execution time and may allow ILP sys-
tems to handle larger problems, thanks to the non-memory storage of data-sets,
thus contributing to improving the scalability of ILP systems.

5.3 Impact of Query Transformations

The results presented in the previous section showed that Aggregation + MBI
approach has the best results, even when compared to the times obtained to
the Basic ILP + IAA approach. Although Prolog’s indexing on all arguments
is an improvement to indexing on the first argument (often provided by Prolog
engines), that is not the only technique that may be used to improve query
execution in Prolog.

Several techniques have been proposed to this effect, namely perform transfor-
mations in the query so that it can be executed more efficiently [24,20], compute
an approximate evaluation [25,26] as opposed to an exact evaluation, store and
reused the computations [27,28], or by exploiting parallelism [29]. Determining
which technique or combinations of techniques produces the best results is out of
scope of this paper. Instead, we selected one ILP technique similar to the query
optimization performed by RDBMS and that has been shown to yield good re-
sults - the query transformations (QT ) proposed in [24]. The results obtained
with query transformations are presented in Table 4 and compared with two
other approaches and with the times taken in an Oracle RDBMS.

Table 4. Comparing with query transformations (execution time in seconds)

Approach
Problem

p.m8.l27 p.m11.l15 p.m15.l29 p.m21.l18
Basic ILP + IAA 15 50 33,972 >1 day
Basic ILP + IAA + QT 1 4 16 39
Aggregation + MBI (MySQL) 5 14 251 734
Aggregation + MBI (Oracle) 6 9 101 164

It is obvious that the results presented are dependent of the RDBMS used.
In our experiments we used MySQL which is known to be a fast database.
However, our experiments suggest that the optimizer is not efficient. The results
obtained for the Aggregation + MBI approach in the Oracle RDBMS show
that it outperforms the MySQL RDBMS by almost a factor of 5 for the largest
problem. This speedup also shows a clear trend to increase as the size of the
data-sets grows. The Oracle optimizer also proves to be more intelligent when
computing the existential sub-query on the Aggregation approach. When using
the Oracle system, the ‘LIMIT 1’ keyword is actually redundant in terms of
performance.
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The impact of query transformations is impressive when compared to the
basic ILP approach. Compared to our Aggregation + MBI approach in Oracle
it is still 4 times faster for p.m21.l18. However, it requires the full data-set to
be loaded to memory, which might not be possible for larger problems. Another
interesting possibility we are exploring is the translation to relational algebra of
the Prolog goals after applying the queries transformations optimization. Our
preliminary results showed that this can in fact improve the performance on
the database side. At this time, the MYDDAS interface translating Prolog to
relational algebra expressions does not support the usage of the cut (!) predicate.
The query transformations uses this extra-logical predicate to optimize queries.
In Prolog, the cut operator is used to prune the search tree, but on the relational
algebra the semantics of the !/0 predicate gives the notion of an existential sub-
query. Preliminaries results of translating the cut to existential sub-queries for
the goals generated by the queries transformation optimization indicate that it
may have a positive impact on performance.

6 Related Work

Several previous implementations have already coupled ILP systems with rela-
tional databases, some mapping logical predicates into database relations, others
translating logical clauses into SQL statements [11,12,13,14], and others using
both [30]. The level of transparency (for the user) in these implementations is
quite variable, ranging from no transparency (the user manually defines the views
for each literal that may appear in a clause) [30] to completely transparent [14].

The idea of coupling ILP with DDB is also not new - the ILP system Warmr
has been coupled with a DDB system to mine association rules [31]. The differ-
ence to our work is twofold. First, Warmr loads the data into main memory from
a relational database, while in our proposal the data remains in the database.
Secondly, we have performed an empirical performance study of several coupling
approaches and proposed to exploit mode based indexing.

7 Concluding Remarks

In this work we have studied several approaches to couple ILP systems with
RDBMS by using a DDB system. The strategy of using a DDB system brings to
ILP systems the technology of relational database systems, which are very effi-
cient in dealing with large amounts of data. We argue that this strategy is easier
to implement and maintain than the approach that tries to incorporate database
technology directly in the logic programming system. And, much more important,
it allows a substantial increase of the size of the problems that can be solved using
ILP since the data does not need to be loaded to memory by the ILP system.

The results of evaluating the several approaches to couple ILP with RDBMS
show that the Aggregation + MBI approach: i) outperforms the other coupling
approaches and significantly reduces the execution time when compared to the
use of a Prolog engine (even with indexing on all arguments) and ii) may allow
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ILP systems to handle larger problems, thanks to the non-memory storage of
data-sets, thus contributing to improving the scalability of ILP systems.

The results also indicate that further research should be done in order to
make learning from RDBMS competitive, in terms of execution time, with a
fast Prolog engine (using indexing on all predicate’s arguments and performing
query transformations). For instance, a possible line of research could be the
adaptation of techniques already developed in the ILP context (see e.g., [20,24])
to be used while learning from RDBMS. As further work we also plan to be able
to implement the transformations from Prolog to SQL described in this paper
as a compilation step, based on program analysis, which takes into account
factors such as the size of data, database indexing information and complexity
of queries. This information should guide an automatic translation of parts of a
Prolog program to database accesses, using SQL as a compiler target language
and a database system as an abstract machine.

Acknowledgements. This work has been partially supported by MYDDAS
(POSC/EIA/59154/2004)and by funds granted to LIACC through the Programa
de Financiamento Plurianual, Fundação para a Ciência e Tecnologia and Pro-
grama POSC. Tiago Soares is funded by FCT PhD grant SFRH/BD/23906/2005.

References

1. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H.,
Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research ,
235–242 (2000)

2. Benson, D., Karsch-Mizrachi, I., Lipman, D., Ostell, J., Wheeler, D.: GenBank.
Nucleic Acids Research 33, 235–242 (2005)

3. Wrobel, S.: Inductive Logic Programming for Knowledge Discovery in Databases.
In: Relational Data Mining, pp. 74–101. Springer, Heidelberg (2001)

4. Raedt, L.D.: Attribute Value Learning versus Inductive Logic Programming: The
Missing Links. In: Page, D.L. (ed.) Inductive Logic Programming. LNCS, vol. 1446,
pp. 1–8. Springer, Heidelberg (1998)

5. Raedt, L.D., Laer, W.V.: Inductive Constraint Logic. In: International Conference
on Algorithmic Learning Theory, pp. 80–94. Springer, Heidelberg (1995)

6. Raedt, L.D., Dehaspe, L.: Clausal Discovery. Machine Learning 26, 99–146 (1997)
7. Srinivasan, A.: The Aleph Manual (2003) Available from

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph
8. Muggleton, S., Firth, J.: Relational Rule Induction with CProgol4.4: A Tutorial

Introduction. In: Relational Data Mining, pp. 160–188. Springer, Heidelberg (2001)
9. Fonseca, N.A., Silva, F., Camacho, R.: April - An Inductive Logic Programming

System. In: Fisher, M., van der Hoek, W., Konev, B., Lisitsa, A. (eds.) JELIA
2006. LNCS (LNAI), vol. 4160, pp. 481–484. Springer, Heidelberg (2006)

10. Soares, T., Ferreira, M., Rocha, R.: The MYDDAS Programmer’s Manual. Technical
Report DCC-2005-10, Department of Computer Science, University of Porto (2005)

11. Shen, W.-M., Leng, B.: Metapattern Generation for Integrated Data Mining. In:
Knowledge Discovery and Data Mining, pp. 152–157 (1996)

12. Brockhausen, P., Morik, K.: Direct Access of an ILP Algorithm to a Database
Management System. In: MLnet Familiarization Workshop on Data Mining with
Inductive Logic Programing, pp. 95–100 (1996)

http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph


198 M. Ferreira et al.

13. Morik, K.: Knowledge Discovery in Databases - an Inductive Logic Programming
Approach. In: Foundations of Computer Science: Potential - Theory - Cognition,
pp. 429–436. Springer, Heidelberg (1997)

14. Bockhorst, J., Ong, I.M.: FOIL-D: Efficiently Scaling FOIL for Multi-Relational
Data Mining of Large Datasets. In: Camacho, R., King, R., Srinivasan, A. (eds.)
ILP 2004. LNCS (LNAI), vol. 3194, pp. 63–79. Springer, Heidelberg (2004)

15. Botta, M., Giordana, A., Saitta, L., Sebag, M.: Relational Learning as Search in a
Critical Region. Journal of Machine Learning Research 4, 431–463 (2003)

16. Codd, E.F.: A relational model for large shared data banks. Communications of
the ACM 13(6), 377–387 (1970)

17. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Computer Sci-
ence Press (1989)

18. Muggleton, S., Raedt, L.D.: Inductive Logic Programming: Theory and Methods.
Journal of Logic Programming 19/20, 629–679 (1994)

19. Soares, T., Rocha, R., Ferreira, M.: Generic Cut Actions for External Prolog Pred-
icates. In: Van Hentenryck, P. (ed.) PADL 2006. LNCS, vol. 3819, pp. 16–30.
Springer, Heidelberg (2005)

20. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the Efficiency of Inductive Logic Programming Through the Use of
Query Packs. Journal of Machine Learning Research 16, 135–166 (2002)

21. Muggleton, S.: Inverse Entailment and Progol. New Generation Computing, Special
Issue on Inductive Logic Programming 13, 245–286 (1995)

22. Blockeel, H., Raedt, L.D.: Top-Down Induction of First-Order Logical Decision
Trees. Artificial Intelligence 101, 285–297 (1998)

23. McCreath, E., Sharma, A.: Extraction of meta-knowledge to restrict the hypothesis
space for ILP systems. In: Australian Joint Conference on Artificial Intelligence,
pp. 75–82. World Scientific, Singapore (1995)

24. SantosCosta,V.,Srinivasan,A.,Camacho,R.,Blockeel,H.,Demoen,B.,Janssens,G.,
Struyf, J., Vandecasteele, H., Laer, W.V.: Query Transformations for Improving the
Efficiency of ILP Systems. Journal of Machine Learning Research 4, 465–491 (2002)

25. Srinivasan, A.: A study of two sampling methods for analysing large datasets with
ILP. Data Mining and Knowledge Discovery 3(1), 95–123 (1999)

26. DiMaio, F., Shavlik, J.W.: Learning an Approximation to Inductive Logic Pro-
gramming Clause Evaluation. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP
2004. LNCS (LNAI), vol. 3194, pp. 80–97. Springer, Heidelberg (2004)

27. Berardi, M., Varlaro, A., Malerba, D.: On the Effect of Caching in Recursive Theory
Learning. In: Camacho, R., King, R., Srinivasan, A. (eds.) ILP 2004. LNCS (LNAI),
vol. 3194, pp. 44–62. Springer, Heidelberg (2004)

28. Rocha, R., Fonseca, N.A., Santos Costa, V.: On Applying Tabling to Inductive Logic
Programming. In:Gama, J.,Camacho,R.,Brazdil, P.B., Jorge,A.M.,Torgo, L. (eds.)
ECML 2005. LNCS (LNAI), vol. 3720, pp. 707–714. Springer, Heidelberg (2005)

29. Fonseca, N.A., Silva, F., Camacho, R.: Strategies to Parallelize ILP Systems. In:
Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 136–153.
Springer, Heidelberg (2005)

30. Weber, I.: Discovery of First-Order Regularities in a Relational Database Using
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Abstract. We investigate using the Mercury language to implement
and design ILP algorithms, presenting our own ILP system IMP. Mer-
cury provides faster execution than Prolog. Since Mercury is a purely
declarative language, run-time assertion of induced clauses is prohibited.
Instead IMP uses a problem-specific interpreter of ground representa-
tions of induced clauses. The interpreter is used both for cover testing
and bottom clause generation. The Mercury source for this interpreter
is generated automatically from the user’s background knowledge using
Moose, a Mercury parser generator. Our results include some encourag-
ing results on IMP’s cover testing speed, but overall IMP is still generally
a little slower than ALEPH.

1 Introduction

In this paper we report on our research into using the Mercury language [1]
to implement and design ILP algorithms. Mercury is a logical/functional pro-
gramming language that provides considerably faster execution than Prolog: this
was our initial motivation for examining it, however our research has uncovered
additional features which may turn out to be useful for ILP.

To focus our research we set out to produce an ILP system, implemented in
Mercury, which was, to a large extent, a ‘clone’ of the well-known ALEPH system.
Our work has produced a working ILP system IMP. However, the aim of this pa-
per is not simply to provide a progress report on our system, but to analyse gen-
eral issues arising from the move from a Prolog-based system to a Mercury-based
one. With this in mind, we describe not only our actually-existing system but also
point to future developments which follow naturally from the move to Mercury.

The paper is organised as follows. In Section 2 we introduce the Mercury
language. Section 3 describes our long-term plans for IMP, whereas Section 4
explains the currently implemented system. Section 5 describes IMP from the
user’s perspective. Section 6 provides benchmarking results on three ILP prob-
lems. The paper concludes, as is customary, with conclusions and suggestions
for future work (Section 7).
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2 The Mercury Language

The Mercury language has been developed at the University of Melbourne.1 The
motivation for the development of the language, as given by its developers, is as
follows.

Mercury is a new logic/functional programming language, which com-
bines the clarity and expressiveness of declarative programming with ad-
vanced static analysis and error detection features. Its highly optimized
execution algorithm delivers efficiency far in excess of existing logic pro-
gramming systems, and close to conventional programming systems. Mer-
cury addresses the problems of large-scale program development, allowing
modularity, separate compilation, andnumerous optimization/time trade-
offs. (http://www.cs.mu.oz.au/research/mercury/)

Roughly speaking, one can view Mercury as Prolog together with declara-
tions specifying the modes and types of predicates. These declarations provide
two central advantages: they permit compile-time checks and they provide in-
formation which the compiler can use for optimisation. Using the information
in declarations, the Mercury compiler translates Mercury source to low-level C
source which can then be compiled to native code. Another feature of Mercury
is that it is a declarative language in fact as well as theory:

To ensure that programmers can actually enjoy the benefits claimed
for logic programs, Mercury has no non-logical constructs that could de-
stroy the declarative semantics that gives logic programs their power. [1]

This means that the cut operator and failure driven loops do not exist in Mercury
programs. Significantly for ILP, assertion (and retraction) of clauses at run-time
is also viewed as non-logical and is thus forbidden.

For a Prolog programmer with experience in writing pure Prolog, actually
writing a Mercury program is quite easy. A Prolog program with predicate dec-
larations, no non-logical constructs and a special main/2 predicate will be a
Mercury program. Fig 1 shows the predicate declaration for the well known
append/3 predicate, which is here written as list.append since it is imple-
mented in Mercury’s list library module. The Mercury predicate definition of
append is identical to Prolog’s and is not shown.

:- pred list.append(list(T), list(T), list(T)).

:- mode list.append(in, in, out) is det. %(1)

:- mode list.append(in, in, in) is semidet. %(2) % implied

:- mode list.append(in, out, in) is semidet.%(3)

:- mode list.append(out, out, in) is multi. %(4)

Fig. 1. Predicate declaration for append/3

1 http://www.cs.mu.oz.au/research/mercury/

http://www.cs.mu.oz.au/research/mercury/
http://www.cs.mu.oz.au/research/mercury/
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In Fig 1 the first line declares the types of the arguments for append. All three
arguments are lists whose elements are all of some type T. Since T is a variable,
append is polymorphic. The rest of the declaration connects modes to deter-
minisms: in in a mode declaration represents a (fully) instantiated argument
(an input), out represents a variable (an output). So (1) if two lists are given to
append then the predicate will succeed and moreover there is exactly one output,
this mode is thus deterministic (det). If (2,3) the first and third arguments are
instantiated then append may fail, but backtracking will never produce alterna-
tive outputs, these modes are thus semi-deterministic (semidet). Finally (4), if
only the third argument is instantiated, then append will succeed one or more
times. It is thus multisolution (multi). A fourth mode (which append does not
use) is nondeterministic (nondet) where the predicate may fail and there may
be several outputs for a given input.

As noted in the Prolog to Mercury Transition Guide: “Mercury is a purely
declarative language. Therefore it cannot use Prolog’s mechanism for doing in-
put and output with side-effects.” [2]. Instead, Mercury’s io.print predicate
(provided in the io library) has the following declaration:

:- pred io.print(T::in, io::di, io::uo) is det.

so that the literal io.print(’Hi’,s1,s2) is true if s1 is the state-of-the-world
before printing ’Hi’ to standard output and s2 is the state-of-the-world after-
wards. “di [stands] for ‘destructive input’ and uo for ‘unique output’. The first
means that the input variable must be the last reference to the original state of
the world, and that the output variable will be the only reference to the state of
the world produced by this predicate” [2]. The main/2 predicate also uses the
same idea: it defines the relationship between the states-of-the-world before and
after execution of the entire program.

Mercury allows the creation and calling of higher-order terms: terms which
represent calls to (particular modes of) predicates. Such terms are typically
passed to higher-order predicates/functions such as solutions/2 (in the
solutions library module) which is Mercury’s version of findall. Here is its
declaration:

:- pred solutions(pred(T), list(T)).
:- mode solutions(pred(out) is nondet, out) is det.

As the pred declaration states, it expects a higher-order term as its first
argument. The mode declaration states this higher-order term should represent
a monadic predicate with a single output with nondet mode. The output of
solutions is the list of outputs produced by repeatedly calling this predicate.
Since Mercury is purely declarative solutions cannot be defined entirely by
Mercury code: calls to solutions ultimately call C functions accessed through
Mercury’s foreign language interface. The ability to define Mercury predicates
by C functions makes it possible to define impure Mercury predicates. Such
predicates are rigidly separated from normal (‘pure’) predicates to ensure the
declarative semantics of the pure code are not lost.
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Mercury has good support for modular design. Each Mercury source file is
a module containing an interface section and an implementation section. The
interface section consists entirely of type and predicate declarations for those
types and predicates the module wishes to make visible to other modules. The
implementation section provides the actual predicate definitions as well as the
declarations for those types and predicates which the module does not wish to
make visible.

3 Declarative ILP

The ILP problem addressed by IMP is essentially the same as that addressed
by many other existing ILP algorithms: the user presents examples and back-
ground knowledge and the system searches for a logic program that explains
the examples using the background knowledge. In addition, the user can provide
various constraints on induced clauses as well as indicating what counts as a
good ‘explanation’ of the data.

A central goal of our research is to evaluate the usefulness of ‘declarative ILP’
where the inductive process (not just its end result) has a declarative semantics.
To this end in this section we provide a view of the ILP problem, which although
only partially implemented in IMP, is the one that informs our long-term plans
for the system.

3.1 Logic Programs as Data Generators

We view ILP from both a logical and statistical perspective simultaneously. From
the statistical perspective the observed data is viewed as having been generated
by some unknown probability distribution, where the distribution is defined by
a Mercury program (i.e. a moded logic program). Examples are always labelled
ground examples of the form:

p(a1,a2,a3,..ai,b1,b2,...bj)-yes
p(a’1,a’2,a’3,..a’i,b1’,b’2,...b’j)-no
q(c1,c2,c3,..ck,d1,d2,...dm)-no

We assume further that each predicate mentioned in the examples has only one
mode, that this mode is known and that the types of the arguments are known.
Suppose that the example predicate p/(i + j) has the following declaration

:- pred p(t1::in,t2::in,..ti::in,
t’1::out,t’2::out,...t’j::out) is some_mode.

where the ti, t’j are types and some_mode is one of det, semidet, multi
or nondet. Note that either or both of i (number of inputs) and j (number of
outputs) may be zero.

All negative examples are assumed to have been generated by (1) the user
posing entirely ground queries to the unknown program and (2) the unknown
program responding with a no. Note though that the ground query:
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p(a1,a2,a3,..ai,b1,b2,...bj)

where the bi are outputs, is just an abbreviation to the following conjunctive
query:

p(a1,a2,a3,..ai,X1,X2,...Xj), X1=b1, X2=b3, ..., Xj=bj

All positive examples of a predicate with a mode of either multi or nondet
are also assumed to have been generated by ground queries. However, positive
examples of mode det or semidet are assumed to be the results of queries where
only the inputs are ground; the observed outputs having been generated by the
program. Note that each such positive example entails a set of negative examples:
any other example with the same inputs but different outputs of the right type.
For all positive examples, the unknown program has responded with a yes.

Our logical perspective on ILP is the standard one: the unknown program
logically entails the positive examples, but not the negative ones. It is not difficult
to see that the statistical and logical perspective are consistent: the statistical
view just uses mode and determinism information to establish how the logical
relationship between example and unknown program is established.

Since formulae (e.g. examples) either do or do not follow from a Mercury pro-
gram the probability distribution defined by the program is of a very restrictive
form: a conditional distribution (conditional on queries) with probabilities only
of one or zero. To represent more general distributions while maintaining the
assumption that the data is generated from a (pure) Mercury program, we can
view examples as having a hidden extra input argument which, without loss of
generality, we assume to be a float sampled from the uniform distribution over
[0, 1]. Thus observed contradictory examples such as

p(a1,a2,a3,..ai,b1,b2,...bj)-yes
p(a1,a2,a3,..ai,b1,b2,...bj)-no

can be viewed as a partial representation of unobserved complete data such as

p1(0.2754,a1,a2,a3,..ai,b1,b2,...bj)-yes
p1(0.5672,a1,a2,a3,..ai,b1,b2,...bj)-no

Although the conditional distribution defined by the complete data is ‘zero-one’,
the distribution defined by marginalising away the hidden argument need not
be. With this approach the unknown Mercury program is both a declarative and
procedural representation of a probability distribution, where the procedural
representation defines a sampler. The hidden argument in each example can be
viewed as a random seed used to generate a single instance from the sampler.
(As explained in Section 4.1 only a crude approximation to this approach is
currently implemented.)

3.2 Background Knowledge

Let M represent the unknown true Mercury program. We allow for the possi-
bility that some of the clauses making up M are already known: the background
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knowledge B. So M = H∪B where H is the set of induced clauses. This entirely
standard use of background knowledge is already implemented in the current
version of IMP. If the user supplies non-empty background knowledge then they
are required to supply consistent type and predicate declarations for this back-
ground knowledge.

3.3 Defining the Hypothesis Space

The user must state which predicates are permitted to appear in the head and
body of induced clauses. All such predicates must have normal Mercury predi-
cate declarations, specifying types, mode(s) and determinism(s). By default all
well-moded clauses constructed from such predicates are considered to be can-
didate induced clauses, however the user can choose to effect arbitrary syntactic
constraints on permissible candidates. All this is implemented in the current ver-
sion of IMP, but to write constraints requires a knowledge of how IMP represents
clauses, which is hardly user-friendly! The hypothesis space is the set of all logic
programs defined using permitted candidate clauses.

3.4 Evaluating Induced Theories

For both complete and incomplete data, the measure of fit to data is the likelihood
P (E|M). For complete data, this number will be either zero (M contradicts
the examples) or one (M does not contradict the examples). In the case of
incomplete data (where there is a hidden random seed) the likelihood for a single
example is given by marginalising over possible values of the unobserved random
seed. In other words, given the query associated with the example, we compute
the probability that a random seed drawn from U [0, 1] would have produced
the observed example: this is the likelihood. The likelihood for the entire data
set is just the product of these likelihoods: conditional on queries the data is
independent and identically distributed.

The likelihood P (E|M) is the key function connecting model to data, however
it is P (M |E), the probability that a candidate model M is the true model given
the data E, that is needed to score candidate models. To see this, suppose we
are dealing with complete data (‘noise-free’ learning). Consider the model M
composed of the background knowledge B and the set of positive examples as
ground unit clauses. This model will have the highest possible likelihood, but
would only be an acceptable model if, unusually, we had reason to believe that
the observed positive examples constituted the set of all possible positive ex-
amples. We almost always have good a priori reasons to believe precisely the
opposite and this prior knowledge needs to be made available to the system.
Since P (M |E) ∝ P (M)P (E|M), the overall score for a candidate model is a
combination of P (M), the prior probability of a model and P (E|M), its likeli-
hood. As previously mentioned, IMP’s current handling of probabilities remains
primitive. Direct consideration of likelihoods and posterior probabilities, as de-
scribed in this section, is not yet implemented: instead there is an approximation
to this Bayesian approach as described in Section 4.1.
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4 System Design

The key features of the IMP system are:

1. It uses a ‘one-clause-at-a-time’ top-down search, bounded below by a bottom
clause;

2. Induced clauses are represented by ground terms;
3. Problem-specific Mercury source is generated prior to compilation; and
4. A new executable is produced for each ILP search.

The next four sections describe these features in the given order.

4.1 Search Strategy

IMP’s basic search strategy is entirely conventional, and is similar to that found
in PROGOL[3] and ALEPH[4]. An as yet uncovered positive example is selected, a
‘bottom clause’ is generated from it using saturation [5] as guided by the modes
of predicates. This mode-guided generation of the bottom clause is essentially
the same as PROGOL’s [3]. Bottom clause construction is a similar task to that
of finding all solutions to a goal, and as with Mercury’s builtin solutions/2
predicate (see Section 2) we have found it necessary to use impure Mercury code
to construct a bottom clause efficiently. Fig 2 shows a fragment of the code used:
note that impure and semi-pure predicates are explicitly flagged as such and that
we have made a promise_pure declaration which is a promise that the rest of
the code can treat construct_bottom_body as if it were pure.

:- pragma promise_pure(construct_bottom_body/3).

construct_bottom_body(Body,Subs0,Subs) :-

impure nb_reference.new_nb_reference(Subs0,SubsRef),

get_body(SubsRef,[],Body),

semipure nb_reference.value(SubsRef,Subs).

Fig. 2. Fragment of impure code for bottom clause construction which we promise can
be treated as if it were pure

Once generated, the bottom clause is used to constrain a top-down uninformed
breadth-first search of clauses; the ‘best’ clause is found, added to the theory,
and a record of which examples it covers is made. The search continues until
all positives are covered. We have also implemented a variant where no bottom
clause is used, allowing pure top-down search.

So the Bayesian approach described in Section 3.4 is not yet implemented
in IMP. Instead we have a crude approximation to it: the user defines clause
evaluation functions. We have used two clause evaluation functions: accuracy
and coverage. If P and N are the numbers of positive and negative examples
covered by a clause, the clause’s coverage score is P − N and its accuracy is
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P/(P + N). The user can also limit the length of induced clauses, the length of
bottom clauses and the number of negative examples a clause can cover.

Very recently, we have implemented a number of optimisations to the search
mostly using ideas from ALEPH. Firstly, the search is branch-and-bound: when
IMP can detect that no refinement of a given clause can possibly out-score the
best clause found so far then the search is (admissibly) pruned at that point.
Secondly, when a clause has more than one parent clause, then only examples in
the intersection of the parents’ coversets are considered as possible members of
the coverset of the clause. Thirdly, each generated clause has an id which is the
ordered list of the literals in the bottom clause it uses: this allows us to prune
away clauses which differ from already considered clauses only in the ordering of
body literals. Lastly, when considering maximally long clauses, we check cover-
age on negatives first: this allow early termination of cover testing if and when
too many negatives are found to be covered.

So, at present, only a few ILP optimisations exist in IMP. We see no reason
to prevent the eventual incorporation into IMP of more advanced optimisations
such as query packs, caching and tabulation. (Mercury has built-in support for
the tabulation.)

4.2 Ground Representations of Induced Clauses

In Prolog ILP systems induced clauses (including bottom clauses) are inter-
nally constructed as terms which are subsequently asserted, thus building up
the induced theory. In Mercury clauses can neither be asserted nor retracted
at runtime. It follows that induced clauses must remain as terms. Moreover,
they will be ground terms since the current implementation of Mercury does not
permit partially instantiated terms.

The IMP ground representation of clauses has two parts: a representation of
the clause with no variables instantiated plus a mapping from (ground repre-
sentations of) variables to ground terms which represents the instantiation state
of the clause. If the clause to be represented has only variables this mapping is
empty, if ground each variable is mapped to a term. Given a ground representa-
tion of a clause the issue is how to reproduce the behaviour of the program that
would exist if the clause so represented were asserted. We have used different
approaches in IMP 0.1 and IMP 0.2.

Using Higher-Order Terms. In IMP 0.1, each candidate clause is represented
by a pair: its ground representation together with its representation as a higher-
order term:

:- type clause ---> c(ground_clause,ho_clause).

To see whether a given clause Clause covers an example with input terms Values
the following predicate is used:
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covers_example(Clause,Values) :-
Clause=c(GC,HOClause),
....
HOClause(ValuesIn,ValuesOut), .... % cover test here

The ground representation is used for ‘bookkeeping’ and the higher-order repre-
sentation (HOClause) is what actually gets called to check coverage.

The key to this approach is to ensure that the ground and higher-order terms
represent the same clause. With this in mind, the refinement operator for IMP0.1
works as follows. Given a parent clause c(gc0,ho0) IMP’s ground refinement op-
erator uses gc0 to generate a set of children ground representations: gc1, gc2,
.., gcn by adding a single (ground representation of a) literal. New higher-order
terms can then be constructed from ho0 and these literals.

Interpreting Ground Representation of Clauses. Although encoding in-
duced clauses as higher-order terms which are then called on examples is quite
a natural approach it has a number of drawbacks. Firstly, we have found it im-
possible to encode recursive clauses using this approach; secondly, higher-order
terms have a different instantiation state from normal ground terms which makes
them harder to manipulate and store during the search process and thirdly, we
suspected that higher-order terms, being created at runtime, were not the most
efficient approach.

In IMP0.2 a different, simpler approach is taken: an interpreter is used to
decode ‘calls’ to the ground representation of clauses. Fig 3 show the type decla-
rations for clauses represented as ground terms and an examples of such a term
(the third argument subs is not actually used in our current implementation).

:- type clause ---> c(head :: literal, body :: literals,

subs :: substitution_map ).

:- type literal ---> l(pred_id,arguments).

:- type literals == list(literal).

:- type argument ---> a(arg_mode,arg_id,type_id).

:- type arguments == list(argument).

% eastbound(H0) :- has_car(H0,B2), load(B2,hexagon,1)

% is represented as:

c(l(bg_lit(12), [a(in, head_arg(0), train)]),

[l(bg_lit(11), [a(in, head_arg(0), train), a(out, body_arg(2), car)]),

l(bg_lit(9), [a(in, body_arg(2), car), a(constant, constant_arg(4),shape),

a(constant,constant_arg(2), int)])],

array([]))

Fig. 3. Ground representation of clauses: type declaration and an example
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Fragments of the interpreter are given in Fig 4: it is similar to a Prolog-
implemented Prolog interpreter except that substitution maps, not partial in-
stantiations, are used to keep track of the instantiation state of variables.

Since the induced theory Theory is threaded through the interpreter, induced
recursive clauses can be properly interpreted. To avoid possible non-termination
due to induced recursive clauses the interpreter implements a depth-bounded call
(the depth is supplied by the user). This is similar to ALEPH and PROGOL. Calls
to background predicates are not depth-bounded: IMP puts the responsibility on
the user to ensure that background predicates terminate. Fig 4 includes the
problem-specific predicate ‘wrapper’ predicate bk_implies/3: the example used
is a fragment of the ‘trains’ example. This predicate is used (in different modes)
both for cover testing and for constructing the bottom clause.

The ground representation of literals, clauses and theories is also ultimately
problem-specific since these types are defined in terms of problem-specific types
examples of which (for the trains) are given in Fig 5.

4.3 Generating Problem-Specific Mercury Source

For both IMP0.1 and IMP0.2 there must be wrappers connecting ground rep-
resentations of predicates to actual predicates. Requiring the user to actually
write these would be a tedious and error-prone burden. Instead IMP automati-
cally generates correct problem-specific wrapper predicates prior to compilation.
IMP uses Moose, a parser generator for Mercury that “does the same sort of thing
for Mercury that Yacc and Bison do for C.” (Moose README file). Moose is
distributed in the ‘extras’ part of the current Mercury distribution.

5 Using IMP

The basic philosophy behind IMP’s operation is that what is known at compile
time should be compiled. An exception to this is that the examples are read in
at run time: compiling a large number of examples (represented as ground facts)
proved to be unacceptably slow. An advantage of inputting examples at runtime
is that different subsets of the data can be used without recompiling IMP.

When IMP is installed there is a one-time compilation of the system modules to
object code. Thereafter, for a given ILP problem there is the following sequence
of events (the execution of which is organised by Makefile dependencies).

1. The user writes only two Mercury modules. The first, called background.m,
is just the background knowledge. Predicates which may appear in induced
clauses are declared in the interface section, others are hidden in the imple-
mentation section. The user also provides a problem-specific options.m file
defining parameters such as how much noise is permitted, the depth-bound,
etc. This is most easily done by editing a copy of the system’s options.m
file which contains default values.
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%FRAGMENT FROM SYSTEM MODULE interpreter.m

:- pred implies_example_aux(theory,example,sub,sub,sub).

:- mode implies_example_aux(in,in(example),sub_di,sub_uo,sub_ui) is cc_nondet.

implies_example_aux(Theory,Example,!BodySubs,ConstantSubs) :-

example.example(ExampleAtom,ExampleSubs,_,Example),

( theory.clause_member(Clause,Theory),

clause.clause(Head,Body,_,Clause),

literal.same_literal_type(ExampleAtom,Head),

arg_sub.make_start_clause_subs(ExampleSubs,!.BodySubs,ConstantSubs,ExampleBodySubs),

implies_conj(1,_,Theory,Body,ExampleBodySubs,ExampleBodySubOut),

arg_sub.get_body_subs(ExampleBodySubOut,!:BodySubs)

;

bk_implies(ExampleAtom,ExampleSubs,_ExampleSubsOut)

).

%FRAGMENT FROM PROBLEM-SPECFIC MODULE bk_implies.m

:- pred bk_implies(literal,substitution_map,substitution_map).

:- mode bk_implies(in,in,out) is nondet. % cover testing

:- mode bk_implies(out,in,out) is nondet. % bottom clause construction

bk_implies(Literal,Subs0,SubsOut) :-

literal(Id,Args,Literal),

(

Id=bg_lit(14), % ’closed’ literal

Args=[Arg1],

clause.argument(in,A1,car,Arg1),

substitution_map.subs_lookup(Subs0,A1,V1),

value(car(B1),V1),

SubsOut=Subs0,

closed(B1) % call to background predicate HERE

;

Id=bg_lit(11), % ’has_car’ literal

Args=[Arg1,Arg2],

clause.argument(in,A1,train,Arg1),

clause.argument(out,A2,car,Arg2),

substitution_map.subs_lookup(Subs0,A1,V1),

substitution_map.insert_and_check(Subs0,A2,V2,Subs1),

value(train(B1),V1),

value(car(B2),V2),

SubsOut=Subs1,

has_car(B1,B2) % call to background predicate HERE

....

).

Fig. 4. IMP0.2 interpreter showing code from a system module and from an
automatically-generated problem specific module for Michalski’s trains
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:- type type_id ---> car; train; shape; int.

:- type pred_name ---> closed; double; eastbound; has_car; jagged;

load; long; open_car; shape; short; wheels.

:- type problem_value ---> car(car); train(train); shape(shape); int(int).

Fig. 5. Automatically generated problem specific types for Michalski’s trains. The
types car, train and shape needed for the definition problem value are defined by
the user in the background file.

2. The problem-specific background.m is compiled by the Mercury compiler.
As well as generating C and object code, a number of other files are created
including a module interface file background.int containing all public type
and predicate declarations.

3. The Moose pre-processor uses background.int to generate the Mercury
modules background_interface.m which provides types and predicates for
manipulating the ground representation of clauses, and bk_implies.mwhich
connects this ground representation to the actual background predicates.

4. These two modules and options.m are then compiled and linked with the
system object code to provide a problem-specific executable.

5. This executable is then run with the file containing the examples as a
command-line argument.

6 Benchmarking Results

We have evaluated IMP on the following ILP problems:

Trains Michalski’s train problem [6]
MSD Morpho-syntactic tagging for Slovene [7]
Muta Mutagenesis [8]

6.1 IMP0.1 Versus IMP0.2

For Trains with 40,000 examples and a single clause search of 83 clauses in both
cases, IMP0.1 took 23 seconds and IMP0.2 took 10 seconds. The Trains data
was from an example dataset that comes with ALEPH; examples were repeated
to form a big enough dataset. For MSD with 2,815 examples, IMP0.1 inspected
20,058 clauses in 54 seconds whereas IMP0.2 inspected 20,024 clauses in 22 sec-
onds. These experiments were sufficient to convince us that the ‘higher-order’
approach in IMP0.1 was inferior to the ‘interpreter’ approach of IMP0.2, and so
all further benchmarking was restricted to IMP0.2.

6.2 Benchmarking Cover Testing

The performance of an ILP system depends on a number of factors a key one of
which is speed of cover testing. Cover testing finds which examples are covered
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by a single clause: that is, which examples would follow if the clause were added
to the background knowledge. In an attempt to compare speed of cover testing
in IMP0.2 and ALEPH, as opposed to speed of the systems overall, we ran both
IMP0.2 and ALEPH without a bottom clause on the MSD dataset. The search
was thus pure top-down (breadth-first) search. This was done because it effec-
tively disables various optimisations in ALEPH which prevent it doing full cover
testing when this is not necessary. We ran the experiment with various limits on
the number of clauses to inspect in a single clause search. The results in Fig 6
show that for this problem, with this artificial restriction, IMP is computing cover
sets more quickly than ALEPH. Although, these results are encouraging we have
not done further such comparisons, since our real interest is in comparing the
performance of IMP and ALEPH in normal operation.

 0

 50

 100

 150

 200

 250

 300

 350

 0  5000  10000  15000  20000  25000  30000  35000  40000  45000  50000  55000

S
ea

rc
h 

tim
e 

(s
ec

on
ds

)

Number of clauses

IMP 0.2
ALEPH

Fig. 6. Cover testing speed comparison of IMP0.2 and ALEPH using no bottom clause
for MSD using 2,815 examples

6.3 Benchmarking Searches

Comparing normal operation of ALEPH and IMP showed that, despite the en-
couraging results of Section 6.2, ALEPH remains the faster algorithm. The results
for Trains and MSD are shown in Table 1. In almost all cases, ALEPH is the
winner although IMP is generally not far behind. In contrast for Muta, IMP is
massively slower than ALEPH: we had to terminate execution after waiting 20
minutes for the bottom clause to appear.

Comparing the clauses found by the two systems, for Trains the two sys-
tems always find the same ‘best’ clause. However, for the MSD domain we found
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that although IMP’s search was a little slower than ALEPH’s, it usually found
a better clause. In all cases, ALEPH returns a clause covering 7 positives and
0 negatives and indeed for |C| = 4, lim(n) = ∞, IMP finds this same clause
(see Table 1 for an explanation of the notation). However, for |C| = 5, lim(n) =
5, 000/10, 000, IMP finds a clause covering 11 positives and 0 negatives, and
for |C| = 5, lim(n) > 10, 000 IMP finds a clause covering 46 positives and 0
negatives. In all these cases IMP and ALEPH have inspected the same number of
clauses: we suspect that IMP is doing a better job of avoiding duplicate clauses
thus allowing it, in effect, to do a bigger search and thus find these better clauses.

Table 1. Comparing IMP and ALEPH (normal operation for a single clause search).
|C| is the limit on clause length, lim(n) is the limit on the number of clauses, |Ex| is
the number of examples, t is the time taken in seconds for the search, n is the number
of clauses actually generated and n/t show the number of clauses generated per second.

Algorithm Dataset |C| lim(n) |Ex| t n n/t

IMP Trains 4 ∞ 10,000 1 38 38
ALEPH Trains 4 ∞ 10,000 1 73 73

IMP Trains 4 ∞ 20,000 2 38 19
ALEPH Trains 4 ∞ 20,000 2 73 36

IMP Trains 4 ∞ 30,000 3 38 13
ALEPH Trains 4 ∞ 30,000 2 73 37

IMP MSD 4 ∞ 2,815 7 4,148 593
ALEPH MSD 4 ∞ 2,815 3 4,293 1431

IMP MSD 5 5,000 2,815 12 5,000 417
ALEPH MSD 5 5,000 2,815 13 5,000 385

IMP MSD 5 10,000 2,815 17 10,000 588
ALEPH MSD 5 10,000 2,815 14 10,000 714

IMP MSD 5 20,000 2,815 21 20,000 952
ALEPH MSD 5 20,000 2,815 18 20,000 1111

IMP MSD 5 30,000 2,815 25 30,000 1200
ALEPH MSD 5 30,000 2,815 21 30,000 1428

IMP MSD 5 40,000 2,815 30 40,000 1333
ALEPH MSD 5 40,000 2,815 24 40,000 1666

7 Conclusions and Future Work

One clear outcome of this research is a (constructive) existence proof that a
PROGOL/ALEPH-style ILP algorithm can be implemented in Mercury. Beyond
this, we have shown that for two example problems (Trains and MSD) IMP is
only a little slower than ALEPH and in some cases finds better clauses. On the
other hand we have terrible results for Muta and our immediate future work
is to discover whether this is a fundamental problem with IMP or due to an
avoidable inefficiency in our implementation. In the mid-term, we intend to take
further optimisations from ALEPH: caching is an obvious candidate.
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In the longer term we hope to take fuller advantage of the modularity of
Mercury. At present user-defined options are provided at compile time. We hope
to extend this to the search algorithm itself so that the different components
of a search (bottom clause vs. no bottom clause, breadth-first vs. A-∗, etc) are
made available at compile time by specifying the appropriate system object files
to link to. The problem specific pre-processor could also be exploited further.
One interesting possibility would be to use it to generate specialised problem-
specific refinement operators. Finally, we are looking to actually implement the
probabilistic approach presented in Section 3.
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Abstract. We are interested in using Inductive Logic Programming
(ILP) to infer grammars representing sets of biological sequences. We
call these biological grammars. ILP systems are well suited to this task
in the sense that biological grammars have been represented as logic
programs using the Definite Clause Grammar or the String Variable
Grammar formalisms. However, the speed at which ILP systems can
generate biological grammars has been shown to be a bottleneck. This
paper presents a novel refinement operator implementation, specialised
to infer biological grammars with ILP techniques. This implementation
is shown to significantly speed-up inference times compared to the use
of the classical refinement operator: time gains larger than 5-fold were
observed in 4

5 of the experiments, and the maximum observed gain is
over 300-fold.

1 Introduction

A significant challenge in the analysis and interpretation of biological sequence
data is the discovery of patterns common to sequences sharing a given biological
function. The use of such patterns is twofold: (1) they can be used to annotate
sequences of unknown function, providing molecular biologists with a likely func-
tion for such sequences; (2) they can help biologists to understand how functions
are realised because they represent common points between sequences of similar
functions.

Patterns in the form of grammars have been used with success to model bio-
logical sequences, we call these biological grammars. Many formalisms have been
used for this task, including String Variable Grammars (SVG) [Sea93], Patscan
patterns [DLO97], Prosite patterns [FPB+02], Basic Gene Grammars [LMR01]
and Probabilistic Regular or Context-Free Grammars [BCD+04, SBH+94]. How-
ever, the hand development of grammars, using for example the formalisms of
[Sea93] or of [LMR01], is difficult and requires expensive human expertise. More-
over, some patterns might be too subtle to be recognised by a human expert.
� Corresponding author.
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Thus, given the enormous volume of data arising from genome projects, the ac-
quisition of biological grammars from sets of biological sequences needs to be
automated.

We propose to use Inductive Logic Programming (ILP) to infer biological
grammars. The advantage of ILP for this purpose is twofold: first ILP infers
logic programs, and logic programs have been shown to be useful for representing
hand designed biological grammars (e.g., [Sea93]); second, unlike most machine
learning technique, ILP is able to bias inference to take expert knowledge into
account. This is certainly an advantage in this application domain since, as
biological sequences are not just sequences but represent molecules with physical
and chemical properties, potential parts of the target grammar are often available
as expert knowledge.

ILP however has an important drawback: inference speed. The usual approach
to obtaining a more efficient inference process is to use language and search bi-
ases. The former allows the search space to be reduced, while the latter influences
its exploration [LD94, sec. 1.3]. This approach have been used to infer grammars
over proteins [MBS+01], the biases being integrated into mode declarations and
pruning predicates. However, despite the efforts of Muggleton et al. [MBS+01],
some inference processes took days to run while exploring a small fraction of
the search space. Such long running times were also confirmed by Bryant & Fre-
douille [BF05]. This drawback has made it difficult to discover the true potential
of ILP for biological grammar acquisition.

We propose to tackle this speed problem by hard-coding the languages and
search biases of Muggleton et al. [MBS+01] in Muggleton’s refinement operator
[Mug95] (Section 2). Compared to classical techniques influencing refinements
with respect to background knowledge (e.g., mode declarations, typing, . . . , see
[Tau94] for an early review), our technique sacrifices the range of applications to
the advantage of efficiency. We empirically show that this sacrifice is worthwhile
since our refinement operator can lead to very significant speeds-up of biological
grammar inference: gains in inference times larger than 5-fold were obtained
in 4

5 of the experiments, with the maximum observed gain being over 300-fold
(Section 3).

Grammars and Biological Sequences. Biological sequences are defined ei-
ther over an alphabet of 4 letters (DNA or RNA sequences), or over an alpha-
bet of 20 letters (protein sequences). Each letter of such sequences represents a
chemical unit which is called a nucleic acid for DNA or RNA sequences, or an
amino-acid for proteins.

A context-free grammar can be seen as a set of rules which represents sets
of sequences. For biological grammars, these sequences are biological sequences.
The rules of a context-free grammar can be represented using the logic formal-
ism known as Definite Clause Grammar (DCG) [PW80]. In this formalism a
sequence over a finite alphabet of letters is represented as a list, each element of
the list corresponding to a letter of the sequence. Figure 1 gives an example of
such a grammar.
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target(A,B) :- gap(A,C), al(C,D), bl(D,E), gap(E,B).
gap(A,A). al([a|X],X).
gap(A,[ |B]) :- gap(A,B). bl([b|X],X).

Each predicate in a DCG clause takes as input (first argument) a list representing the
sequence to analyse, and outputs (second argument) the part of the list remaining when
removing a prefix that the predicate matches. For this DCG, a call target(Seq,[]) will
succeed if and only if Seq contains the sublist [a,b] (i.e., the subsequence ‘a b’). Indeed,
the gap/2 predicate matches any sequence, and the al/2 (resp. bl/2) predicate matches
sequences starting with ‘a’ (resp. ‘b’). The main rule (target/2) therefore accepts all
sequences starting with any sequence, followed by ‘a b’, followed by any sequence.

Fig. 1. A simple grammar represented as a DCG

We denote the length of a sequence s by |s|. Biological sequences are of very
variable length, protein sequences’ lengths range from roughly 50 to many thou-
sands of letters. Note the contrast with natural language, where sequences rarely
exceed 500 letters. This implies that it is very unlikely that any grammar of rea-
sonable size can characterise all parts of a set of biological sequences (even if
these sequences share a common biological function). From this observation, the
notion of gap – as introduced by Figure 1 – is very important to biological gram-
mars: gap/2 is the predicate which can be used to cover parts of the biological
sequences uncharacterised by the rest of the grammar rules. A typical biological
grammar therefore includes some well characterised parts separated by gaps.

Inference of Biological Grammars with ILP. Different approaches to gram-
mar learning with ILP have been considered, mainly [CP99, PC01, MBS+01].
These papers differ in two main points. The first application is natural lan-
guage grammars [CP99, PC01] while the application in [MBS+01] is biological
grammars. Second, the representation of grammars in [CP99, PC01] uses chart
parsing tables, while [MBS+01] uses DCGs.

Our work takes its roots in the approach of Muggleton et al. [MBS+01] and
uses the DCG formalism. To infer a rule like the target/2 rule of Figure 1, the
idea of [MBS+01] is to provide: (1) examples under the form target(L,[]).
where L is a list of letters representing a biological sequence; and (2) DCG

predicates as background knowledge (in Figure 1 this corresponds to providing
the gap/2, al/2 and bl/2 definitions). The inference process aim is to combine
them into new DCG rules optimising the evaluation function.

In this framework, the ILP system has to be prevented from inferring logic
rules which do not represent DCGs. A main constraint is that the user can only
provide background predicates respecting the DCG semantic, i.e., they must
have two arguments, take a sequence s as first argument, and return in the
second argument a suffix of s. We also have to ensure that the inferred rule is a
DCG, leading to the following constraints:
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c0) the head of the rule contains two variables;
c1) the first variable of the head must be unified with the first variable in the

first literal of the body;
c2) the second variable of all body literals but the last must be unified with the

first variable of the following literal;
c3) the second variable of the head must be unified with the second variable of

the last body literal;
c4) all couples of variables unspecified by points (c1-c3) must not be unified1.

Part of these constraints can be enforced using mode declarations of the following
form [MBS+01]: modeh(1,target(+rl,-rl))and modeb(n,bk predicate(+rl,
-rl)). In these declarations, rl is a predicate accepting lists of letters; target
is the predicate to infer; bk predicate is a background knowledge predicate
and n is its ambiguity (i.e., the maximum number of times a backtrack on this
predicate can succeed). These declarations enforce c0-c1 but only partially c2-
c42: Muggleton et al. [MBS+01] had to use pruning predicates to enforce the
remaining parts (Subsection 2.2 gives more details on this point).

2 A Refinement Operator for Biological Grammar
Inference

This section is divided in two parts. Subsection 2.1 considers the notion of bottom
clause and how this notion can be simplified for biological grammars. The bottom
clause defines elements of the search space. Subsection 2.2 details the proposed
refinement operator to explore this space.

2.1 Bottom Clause Construction

Bottom Clause for Biological Grammar Learning. The notion of bot-
tom clause was introduced by Muggleton in [Mug95]. Such a clause, denoted
by botc(e) is constructed from a positive example e and represents the most
specific logic program, defined using the background knowledge and respecting
the mode declarations, that covers e. The CProgol algorithm [Mug95] works
by taking an example e1 and constructing its bottom clause botc(e1). It then
searches through the sets of clauses θ-subsuming botc(e1) to return the best one
with respect to the evaluation function. Further clauses are inferred using the
same strategy iteratively, but starting from the set of yet uncovered examples
(uncovered by any of the already inferred clauses); this is the principle of the
cover set algorithm.

An example of bottom clause for biological grammar learning is given in Fig-
ure 2. In this example the background knowledge predicates are limited (for
the sake of explanation) to two physical properties of the letters (represent-
ingamino-acids). The neg/2 (resp. small/2) predicate corresponds to negatively
1 For example, a rule target(A,B):-foo1(A,A),foo2(A,B). is not a DCG rule but

respects (c0-c3).
2 For example, a rule target(A,B):-foo1(A,C),foo2(A,C),gap(C,B). respects the

mode declarations but violates c2.
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target(A0,A4) :- gap(A0,A0), gap(A0,A1),..., gap(A4,A4),
neg(A0,A1), neg(A3,A4), small(A0,A1), small(A1,A2).

Fig. 2. Bottom clause for a (fake) protein sequence [d,p,i,e] using background knowl-
edge from three predicates: the gap/2 predicate and two predicates related to physical
properties of amino-acids (neg/2 and small/2).

charged (resp. small) amino-acids. They can be defined by the sets of rules:
{neg([α|X],X). :α∈ {d,e}} and{small([α|X],X). :α∈{a,c,d,g,n,p,s,t}}.
Then there is the gap/2 predicate which, as explained in Section 1, can be con-
sidered to be compulsory for biological grammar inference processes and allows
parts of the sequences uncharacterised by the inferred grammar to be covered.

Calls to DCG predicates which succeed match a prefix of the input sequence
and return the remaining suffix. Therefore, each variable of the bottom clause
botc(e) corresponds to a suffix of the sequence e. We emphasise this fact in Figure
2 by using notation Ai for the variable corresponding to the suffix of e starting
at position i in e (positions are between letters of e, and 0 is the position before
the first letter). Therefore, on Figure 2, the presence of a predicate foo(Ai,Aj)
means that foo/2 matches the subsequence of e between positions i and j. This
particularity of bottom clauses constructed over DCGs enables the use of a
simplified representation: we call it the bottom automaton.

From Bottom Clause to Bottom Automaton. In the bottom automaton,
denoted by bota(e), positions are represented by states and transitions represent
background predicates: a transition foo between states i and j meaning that
predicate foo/2 matches sequence e between positions i and j. Since they violate
(c4), transitions such that i = j are ignored (i.e., transitions corresponding to
predicates of the form foo(X,X) in the bottom clause). A bottom automaton is
represented in Figure 3. On this figure, unlabelled transitions are those for the
gap/2 predicate. The initial (resp. final) state of this automaton corresponds
to position 0 (resp. |e|) of e, and is represented with a short incoming (resp.
outgoing) arrow.

Fig. 3. The bottom automaton bota(e) equivalent to the bottom clause botc(e) of Fig-
ure 2

By definition, the bottom automaton and the bottom clause are two equiv-
alent representations of the same concept. The important things to see is that
all DCG θ-subsuming the bottom clause and respecting constraints (c0) to (c4)



An ILP Refinement Operator for Biological Grammar Learning 219

correspond to a path from the initial state 0 to the final state |e| in bot a(e).
For example, the path: 0 → gap → 1 → small→ 2 → gap → 4, which accepts
sequence gap small gap, corresponds to rule:
target(A,B):-gap(A,C),small(C,D),gap(D,B). In addition, a path not end-
ing in state |e| corresponds to a rule respecting all constraints but (c3). (This
fact will be useful later on.) For example, the path: 0 → neg→ 1→ small→ 2
corresponds to rule: target(A, ):-neg(A,B),small(B, ).

Creating the Bottom Automaton. Algorithm 1. shows how to create the
bottom automaton. A similar procedure could be used to create a bottom clause
specialised to biological grammar learning, but the formalism of the bottom
automaton turned out to be easier to use. Optimisations of this algorithms use
properties (p1) and (p2), linked to the gap/2 predicate:

p1) All states of bota(e) can be reached from state 0 (equivalently, botc(e) con-
tains |e|+ 1 different variables)3.

p2) We have (|e|)(|e|+1)
2 transitions by symbol gap in the bottom automaton

(equivalently, (|e|+1)(|e|+2)
2 gap/2 predicates in the bottom clause, this num-

ber is larger than the number of transitions in the bottom automaton to
count predicates of the form foo(X,X)).

Property (p1) allows us not to compute the set of positions of e that can be
reached by the use of the background knowledge: we know that all positions are
reached (hence the loop on line 2 of Algorithm 1.). Property (p2) means that
very large bottom clauses are considered during inference (e.g., if |e| = 200, the
bottom clause is of minimal size 20301). We can circumvent this problem; since
it is known that gap transitions are present between each couple of states of the
automaton, it is easier not to store them (line 3, condition pred �=gap): instead,
a particular treatment in the refinement operator can be used to introduce gaps
when needed. The advantage is twofold: gain in memory, since this prevents the
bottom clause size being quadratic in the sequence length; gain in execution
time, since the bottom automaton can then be constructed faster.

The size of the resulting automaton is in O(|e|×|BK|×max(ma)), where |BK|
is the number of background knowledge predicates and max(ma) is the maxi-
mum ambiguity encountered for a predicate different from gap/2. As max(ma)
can be considered much smaller than the sequence length4, the automaton size
can be considered linear in this length (compare with the O(|e|2) number of
elements in a bottom clause storing gaps). The time complexity of Algorithm 1.
is in O(|e| × |BK| × (K1 + max(ma) ×K2)), where K1 is the cost of obtaining
the list S (which depends on the background predicates implementation), and
where K2 is the cost of inserting a transition in the automaton (line 7); this cost
is, in our implementation, in O(log(|BK|)).

3 This is because the gap/2 predicate can return all suffixes of its input sequence.
4 In practice, only the gap predicate is so ambiguous that it can match in between all

positions of the example sequence.
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Algorithm 1. Construction of the bottom automaton without the gap transi-
tions over a sequence e.
1: Create |e| + 1 states, labelled 0 to |e|.
2: for i in [0, |e|] do
3: for all background knowledge predicate pred (pred�=gap) do
4: let ma be the ambiguity degree of pred as stated by mode declarations
5: let S be the list of Aj obtained by backtracking up to ma times on pred(Ai,Aj)
6: for all Aj in S do
7: Add a transition between states i and j labelled by pred

2.2 Refinement Operator

Using the bottom automaton, we propose a refinement operator adapted to
biological grammar learning. Our operator can be seen as a specialisation of
the classical ILP refinement operator introduced by Muggleton [Mug95]. This is
the same specialisation that Muggleton et al. [MBS+01] achieved using pruning
predicates. We therefore start by describing [MBS+01] pruning, and then explain
how we integrate this pruning into the refinement operator.

Removing Non DCG Rules using Pruning. Muggleton et al. [MBS+01]
pruned all rules not respecting constraints (c2) or (c4). Rules with two following
gaps in the body were also pruned since two following gaps are equivalent to a
single gap. Rules violating (c0) and (c1) do not need to be pruned: they are not
present in the space thanks to mode declarations. Finally, rules only violating
(c3) were not pruned: they were refined to enable all DCG rules of the search
space to be reached. The rules returned by inference processes do however respect
(c3): indeed, the mode declarations allow them to be present in the search space
but not to be returned by the inference process.

In practice this corresponds to refining rules of the form:

target(A, ) :- foo0(A,B), ..., foom(X, ). (r0)

into rules of the following forms:

target(A, ) :- foo0(A,B), ..., foom(X,Y), foom+1(Y, ). (r1)
target(A,Z) :- foo0(A,B), ..., foom(X,Y), foom+1(Y,Z). (r2)

Rules (r0) and (r1) violates (c3) while rule (r2) is an inferable DCG rule. Using
this strategy, the search space was reduced to a tree containing all DCG rules
θ-subsuming botc(e) (i.e., the operator is optimal for the DCG rules), the rules
respecting (c0) to (c4) being the leaves of the tree and internal nodes being rules
violating only (c3). Such a tree, corresponding to the bottom clause of Figure 2,
is given in Figure 4.

The Proposed Refinement Operator. By integrating the constraints in the
refinement operator, we generate only rules that are correct for the application,
instead of generating rules that need to be pruned. Our refinement operator is
described by Algorithm 2.
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target( , ):-
true.target(A,B):-

gap(A,B).

target(A, ):-
gap(A, ). target(A, ):-

gap(A,B),
small(B, )

target(A, ):-
neg(A, ).

target(A, ):-
small(A, ).

target(A,C):-
gap(A,B),
neg(B,C).

target(A, ):-
gap(A,B),
neg(B, ). . . . . . .

. . .

. . .

Fig. 4. First levels of the search space associated with the pruning proposed by
[MBS+01] and the bottom clause of Figure 2. Refinements are represented by arrows.
Double boxes correspond to inferable rules, while single boxes are internal nodes of the
search space.

Algorithm 2. Refinement operator for grammar inference in the space defined
by bota(e).
1: let tgt(A, ):- foo0(A,B),...,foom(X, ) be the rule to refine
2: Compute the set of reachable states in bota(e) by foo0,...,foom

3: M ← {0} (The marked states, starting with the initial state)
4: for v ∈ [0, m] do
5: if foov=gap then M ← {i ∈ N : min(M) < i ≤ |e|}
6: else M ′ ← ∅
7: for transitions i

foov−→ j in bota(e) with i ∈ M do M ′ ← M ′ ∪ {j}
8: M ← M ′

9: Compute predicates that can be added at the end of the refined rule
10: if foom = gap then P2 ← P1 ← ∅ else P1 ← P2 ← {gap}
11: for i ∈ M do
12: for transitions i

pred−→ j in bota(e) do
13: P1 ← P1 ∪ {pred}
14: if j = |e| then P2 ← P2 ∪ {pred}
15: Compute the set of possible refinements
16: R ← ∅ (The set of refinements)
17: for pred ∈ P1 do R ← R ∪ {tgt(A, ):-foo0(A,B),...,foom(X,Y),pred(Y, )}
18: for pred ∈ P2 do R ← R ∪ {tgt(A,Z):-foo0(A,B),...,foom(X,Y),pred(Y,Z)}

Consider rule (r0), to refine it the algorithm has to add a predicate at its end,
but also has to ensure that the obtained rule is in the search space defined by
bota(e). As legal predicates correspond to paths in the bottom automaton, the
problem can be reduced to path searching. Refinements into rules of the (r1)
form have to correspond to paths starting from state 0, but which can end in
any state i of the automata. This means that the rule can cover the first i letters
of e and that further refinement is needed to cover the remaining letters. For
rules of the form (r2) the paths have, in addition, to end in state |e|: this ensures
that the rule is able to cover e.
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Therefore, the first step of Algorithm 2. is to find all states of the bot-
tom automaton that can be reached, starting from state 0, by the sequence of
predicates foo0 ...foom. This can be done using dynamic programming to
mark the states that are reachable in the bottom automaton by following tran-
sition foo0 from state 0, then foo1 from the marked states, . . . , up to foom.
This work is done by lines 2-8 of Algorithm 2. (among these, line 5 takes into
account that gap rules are not stored in the bottom automaton: gaps match any
sequence so, when it is encountered, the updated marked states are all positions
larger than the current minimal marked state). We can then deduce, from the
set of marked states, the possible predicates to use for the (r1) refinements: i.e.,
all predicates present on outgoing transitions of the marked states (lines 9-14
of Algorithm 2.); and for (r2) refinements, i.e., those that also enable to reach
state |e|. Finally, we construct the set of refined rules from the original rule and
these sets of predicates (lines 15-18). Algorithm 2. avoids returning redundant
rules by working with sets instead of lists, and prevents rules which contain 2
consecutive gaps, which is meaningless (condition line 10).

3 Experimental Evaluation

In this section we report our empirical investigation of the time gain obtained
by using our refinement operator.

3.1 Experimental Method

The experiments concern inference of grammars over protein sequences. We con-
sider two aspects of the problem: inference of a grammar from positive and ran-
dom examples as proposed by Muggleton [Mug97], and inference from positive
and negative examples. The implementation of the bottom automaton algorithm
and the refinement operator, as well as the public part of the datasets, can
be found at http://www.comp.rgu.ac.uk/staff/chb/research/data sets/
ilp06/refine op

Positive and RandomDataset. The dataset for positive only learning was pro-
vided by experiments of Muggleton et al. [MBS+01]. Among the different experi-
ments reported in [MBS+01] we selected the one that took the longest to complete
because in this case the efficiency of the grammar acquisition was a bottleneck.
This experiment involved inferring on subsequences, called middle, of Neuropep-
tide Precursors Proteins (NPPs). The examples comprise 76 positive and 2 910
random middle sequences. The length of these sequences vary from 5 letters to
95. We denote this dataset by PosRand. This dataset is in the public domain.

Positive and Negative Dataset. The data set for discriminative learning
consists of two sets of sequences representing two qualitatively distinct classes,
Gi/o and Gs/q, of a protein family known as the G-protein coupled receptors
(GPCRs) [PPL02]. Data allowing the classification of these proteins into the two

http://www.comp.rgu.ac.uk/staff/chb/research/data_sets/ilp06/refine_op
http://www.comp.rgu.ac.uk/staff/chb/research/data_sets/ilp06/refine_op
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sets is proprietary. The Gi/o and Gs/q datasets contain 43 and 94 sequences
respectively. GPCRs have a characteristic 7 membrane-spanning regions and
thus have regions outside the cell, within the cell membrane and inside the cell.

In this paper we present results for one of the parts inside the cell, called intra-
cellular loop #2, and for this inference process, the Gs/q sequences were used as
positive examples while the Gi/o sequences were used as negative examples. The
lengths of these sequences vary from 12 to 46 letters. We denote this dataset by
PosNeg.

Inference Processes and Parameters. All experiments have been running
on a SunBlade2500 under SunOS 5.8. We used the Aleph [Sri93] implementa-
tion of Muggleton’s refinement operator [Mug95] to test our ideas, instead of
the original CProgol implementation. This choice was made because Aleph is
much easier to modify than CProgol: it gives the user a large number of options
including defining a user refinement operator and preventing the default bottom
clause construction. We denote inference with Aleph, using Muggleton’s opera-
tor [Mug95], by ref-ℵ, and inference with Aleph, using our biological grammar
dedicated bottom clause construction and refinement operator, by ref-g.

The principle of the experiments is to explore the search space up to a given
depth with both systems and observe execution times, knowing that the inferred
rules from both systems are the same (see Appendix A) because the explored
search spaces are the same. We considered maximum exploration depths in the
search space (corresponding to Aleph parameter clauselength) of 4, 5 and 6
for the PosRand dataset, and of 5 and 6 for the PosNeg dataset. Inference with
clauselength less than 5 on PosNeg is not interesting because, for biological
reasons on this dataset, rules are required to start and end with the gap predicate:
the head and the two gaps already count for 3, so a value of 4 corresponds to
using background knowledge rules one at a time, hence the starting value of 5.

The evaluation function used for PosRand dataset was Muggleton’s evalua-
tion function for positive only learning [Mug97]. A different evaluation function
was needed for the PosNeg dataset because it does not contain randoms. The
Gi/o and Gs/q subsets of the PosNeg dataset contain a very different number
of sequences while having the same importance to the biologists. Therefore, to
avoid biasing the inference toward one class, we decided to use an evaluation
function which weights the examples of each class by the inverse of the number
of instances of the class available. The evaluation function used is the accuracy
over the weighted examples, i.e., acc = 1

2 ∗(
p
P + n

N ), where P (resp. N) is the size
of the positive (resp. negative) training set size, and p (resp. n) is the number of
positive (resp. negative) training examples covered (resp. rejected) by the rule.

After preliminary experiments, it became clear that inference times were
strongly influenced by the minacc setting of Aleph. This parameter is a thresh-
old on the minimal precision of inferable rules with respect to the training
examples5. We therefore considered inferences with different minacc values (0.1,
0.5 and 0.9) to obtain an idea of the gain in different inference situations.
5 Precision is defined here as the number of accepted positives over the sum of the

number of accepted positives and accepted negatives.
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Table 1. Inference times (seconds) on the PosRand and PosNeg datasets. (∗): Ex-
periments where the nodes limit of Aleph was exceeded. (+): Experiments stopped
after running more than the indicated time.

PosRand PosNeg

min clauselength clauselength
Algo acc 4 5 6 5 6

ref-ℵ 0.1 1 213 ∗17 530 ∗+324 000 956 ∗ 69 329
ref-g 151 1 897 38 899 1 087 52 299

Gain 8.0 9.24 >8.3 0.9 1.3

ref-ℵ 0.5 1 311 ∗+334 000 ∗+413 280 834 ∗ 60 827
ref-g 131 1 944 55 878 265 12 098

Gain 10.0 >171.8 >7.4 3.1 5.0

ref-ℵ 0.9 1 802 ∗+511 220 ∗+511 200 1232 ∗ 120 030
ref-g 156 1 601 63 253 186 5 541

Gain 11.6 > 319.0 >8.1 6.6 21.7

3.2 Results of the Experiments

The running times are listed in Table 1. Very different speed-ups were obtained
depending on the data, the minacc and the clauselength parameters. Speed-
up factors over 5 were obtained in 4

5 of the experiments, the best speed-up
obtained being over 300-fold (PosRand, minacc= 0.9, clauselength= 5). It
is possible that even greater speed-ups can be achieved since many experiments
on PosRand using the default refinement operator had to be stopped after
running more than 90h, while the corresponding experiments using the hand-
made refinement finished by themselves (always in less than a day). Moreover,
many ref-ℵ experiments reached the limit on the maximum number of nodes
to be explored by the algorithm on at least some of the algorithm cycles (the
nodes parameter of Aleph was set to 500 000). Inference with ref-g never
reached this limit. This implies two things: (1) the potential gains, given an
unlimited value for nodes are larger than those shown in Table 1 (cells with
the ∗ symbol); (2) given that the search is exhaustive, the results of the ref-g

experiments guarantee that the obtained clauses are the best possible up to the
given clauselength.

The inference times of Table 1 clearly show the advantages of our refinement
operator, both in the PosRand and the PosNeg experiments. In practice only
one inference process was slower when using our refinement operator (Table 1,
PosNeg, minacc= 0.1, clauselength= 5). This possible loss is however small
compared to the potential gains observed for all other parameters. The best
gains were obtained with larger values for the minacc setting. This is good news
because maximising the precision is usually desirable.

3.3 Interpretation of Experiments

Even if the results obtained are very satisfying, being able to explain their vari-
ation can help us understand how to improve them. A potential explanation
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of this variation is that Aleph is using different optimisations to speed-up the
search. We discuss how two of these optimisations can explain the variation of
the results of Table 1.

The gain of 0.9 observed with PosNeg, clauselength=5 and minacc=0.1
We will refer to the first of these optimisations as optimisation A. Optimisation
A, which is only available to ref-ℵ, is that Aleph knows that its default re-
finement operator is working by specialising rules. It can use this information
to prevent, when evaluating the performance of a rule, the parsing of examples
which were rejected by its father rule. This optimisation does not take place
if the user provides his own refinement since Aleph does not know if the re-
finement operator works by specialisation or generalisation (or both). The gain
of 0.9 for PosNeg with minacc=0.1 and clauselength=5 could be the extra
parsing time needed outweighing the optimisations brought by the refinement
operator.

The Improvement in Gain when Augmenting minacc. Another optimisa-
tion of Aleph, Optimisation B, uses the minacc value to prevent the parsing of
some examples when the evaluated clauses are at maximum depth. This is done
using the formulae minacc = p

p+n (where p and n are respectively the number
of positives and negatives/randoms accepted by the rule), Aleph computes the
maximum number of negatives/randoms that the rule can accept once the num-
ber of positives covered is known (i.e., (1−minacc)p

minacc ). It then stops parsing if this
number is reached and if the clause is of size clauselength (smaller rules have
to be evaluated as they could be refined). This optimisation is available both for
ref-ℵ and ref-g.

Conjecture. To summarize, thanks to optimisation B, the higher the minacc
value, the smaller is the number of examples to parse. Now, there is an effect of
optimisation B on optimisation A: when minacc is high, optimisation B is very
efficient and optimisation A cannot reduce the number of examples to parse much
more. We therefore make the following conjecture to explain the increasing gains
with respect to minacc: when increasing minacc, optimisation A has less and
less effect, and the gain offered by ref-g over ref-ℵ is more and more visible.
This suggests that:

– the true gain of our optimisation is closer to that observed when minacc=0.9;
– both higher and more stable gains with respect to minacc could be obtained

by making Optimisation A available for inference with ref-g.

4 The Quality of the Resulting Grammars

This paper has focused on the speed at which ILP systems can generate bio-
logical grammars. Elsewhere [BFW+06] we have published results concerning
the quality of the resulting grammars. We have applied our refinement operator
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implementation to a hard protein function inference task: the prediction of the
coupling preference of GPCR proteins [BFW+06]. The time needed to execute
the experiments reported in [BFW+06] was approximately two months. It would
have taken much longer to obtain the same results if we had used the default
refinement operator (ref-ℵ). We estimate that it would have taken 10 months
given that Table 1 suggests a five fold time gain for similar tasks (PosNeg,
minacc=0.5).

While this does illustrate why our refinement operator implementation(ref-g)
is important for hard protein function inference tasks, further work is need to
establish whether, given the same amount of run-time, ref-g results in signif-
icant improvements in the quality of the resulting grammars in comparison to
ref-ℵ.

5 Other Applications of the Bottom Automaton
Formalism

This paper has shown how our bottom automaton formalism can be used to
implement one particular refinement operator, namely the one introduced by
[Mug95]. However it could be used to implement other refinement operators; the
formalism itself does not place constraints on the exploration strategy.

Moreover, we believe that the strategy used to create the bottom automaton
could be usefully reused for problems involving complex examples (e.g., trees,
graphs,...) which involve trying to find rules matching substructures of those
examples (e.g., subgraphs or subtrees). Indeed simplifications similar to those
proposed in Algorithms 1 and 2 (i.e. those linked to the gap/2 predicate) could
also be considered in such problems.

6 Conclusion

We have integrated the biases of biological grammar inference into a dedicated
ILP refinement operator. We have shown that, by using this operator, inference
running times can decrease very significantly compared to the previously used
technique using pruning predicates: time gains larger than 5-fold where obtained
in most experiments, and the best observed gain is over 300-fold.
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A Appendix: The Equality of Rules Inferred by REF-G
and REF-ℵ

In the ref-g implementation, Aleph is prevented from constructing the bottom
clauses, therefore the inferred rules are not checked for consistency with the mode
declarations. This means that rules violating (c3) (i.e., of the form target(A, )
:- foo0(A0,A1),...,foom(Am, )) can be inferred when using ref-g but not
when using ref-ℵ. For the sake of comparison between ref-g and ref-ℵ, we
added in ref-g an Aleph false/0 predicate rejecting clauses violating (c3).
(Like the prune/1 predicate, the false/0 predicate can be used to prevent the
inference of some rules; however, unlike rules rejected by prune/1, rules rejected
by false/0 are refined.) After this modification of the ref-g code, the rules
inferred by both systems were the same.

When using the ref-g operator in other frameworks, adding a false/0 pred-
icate is not needed. Indeed, since gap/2 predicates are allowed in rules, we can
systematically transform a rule violating (c3), i.e., of the form: target(A,Z)
:- foo0(A,B),...,foom(X,Y), where Z and Y are free variables, into a rule:
target(A,Z) :- foo0(A,B),...,foom(X,Y),gap(Y,Z).

These two rules cover the same examples. Therefore, without adding a false/0
predicate, the algorithm explores for free, for all rules ending with a gap, one
step deeper in the search space. The only drawback is that a small syntactic
correction must be applied to the inferred rules.
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Abstract. Inductive Logic Programming (ilp) methods have proven to
succesfully acquire knowledge with very different learning paradigms,
such as supervised and unsupervised learning or relational reinforcement
learning. However, very little has been done on applying it to Gen-
eral Problem Solving (gps). One of the ilp-based approaches applied
to gps is hamlet. This method learns control rules (heuristics) for a
non linear planner, prodigy4.0, which is integrated into the ipss sys-
tem; control rules are used as an effective guide when building the plan-
ning search tree. Other learning approaches applied to planning generate
macro-operators, building high-level blocks of actions, but increasing the
branching factor of the search tree. In this paper, we focus on integrat-
ing the two different learning approaches (hamlet and macro-operators
learning), to improve a planning process. The goal is to learn control rules
that decide when to use the macro-operators. This process is successfully
applied in several classical planning domains.

1 Introduction

Planning is a problem solving task that consists on, given a domain theory (set
of states and operators) and a problem (initial state and set of goals), obtaining
a plan (set of operators and a partial order of execution among them), such
that, when executed, transforms the initial state into a state where all goals
are achieved. Planning is computationally hard (pspace) in general. To reduce
the difficulty of finding a solution to a problem, many solvers employ learning
techniques that improve noticeably the original behaviour of the solvers [1].

One successful technique consists of learning macro-operators, that are com-
positions of simpler operators. Their main advantage is the decrease of the depth
in the search tree, reducing the number of nodes and the number of variables
to bind; that is memory and time. However, their main drawback is the utility
problem [2]. The addition of macro-operators to the domain description increases
the branching factor and the processing cost per node, which can worsen search
performance. One way of partially solving this problem, as was applied in [3],
consists on filtering macro-operators to the most used ones. But even using this
filtering, we still encounter the utility problem.

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 229–243, 2007.
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In order to alleviate this problem, we propose to learn heuristics that can
guide the problem solver when deciding which operator (or macro-operator) to
use in a given decision. Thus, a second learning approach obtains control rules
from search episodes [4]. It is based on a relational approach that combines an
analytical learning strategy (based on EBL) with an inductive strategy for in-
cremental refinement of learned knowledge. As most relational learning systems,
it learns by generalizing and specializing a set of rules. In this paper we use
hamlet to find a set of control rules that are able to decide when to use the
acquired macro-operators. Using control rules, ipss reduces the number of nodes
of the search tree and, thus, the planning time.

A similar combination was used in [5], where macro-operators and chunks
(structures similar to rules) are used together to improve the results of the solver.
However, the selected macro-operators were not filtered before using them, po-
tentially leading to the utility problem. Also the chunks were created only from
a given macro-operator, instead of learning them when using all operators in the
domain. Finally, there were no experiments reported, so we can not evaluate its
performance.

In the next section, we describe the nonlinear planner used for the experi-
ments, prodigy4.0, and the two learning modules: macro-operators generator
and the learning system, hamlet. The third section describes the method we
use to filter the macro-operators and to generate the control rules. Section 4
shows the experiments on five domains of the International Planning Competi-
tion (IPC). Finally we introduce some conclusions and outlines future work.

2 IPSS

ipss is an integrated tool for planning and scheduling [6], which is based on
prodigy [7] as the planner component. The two learning modules used in this
work, macro-operators learning module and hamlet, are integrated into ipss. In
Figure 1 we can see an schema of the three components. The three subsections
describe all of them.

2.1 The Problem Solver

prodigy4.0 is a nonlinear planner, that follows a means-end analysis and bidi-
rectional search procedure. Its inputs are: a domain theory, that includes the
operators and an object hierarchy; the problem to be solved, defined by an ini-
tial state and a set of goals; and control knowledge, described as a set of control
rules, that guide the search process.

The planner has several decision points, such as: select a goal, select an op-
erator, select a binding of the operator and decide whether to subgoal on a
pending goal or apply an operator when its preconditions are true in the current
state. From a learning perspective the important fact about how the planner be-
haves is that it consists of a search process that can be controlled by heuristics
(in form of control rules) that can be learned.
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Macro-operator

learning

IPSSDomain

HAMLET

Training problems

New operators

(macro-operators)

Control rules

Search

tree

Plan

Fig. 1. Diagram of the IPSS planner, Macro-operator learning module and hamlet

In [8], a meta-model valid for most planners that characterize all of them in
terms of those search decisions is presented.

2.2 The Macro-operators Module

A macro is an operator that summarizes the execution of several simpler opera-
tors. Given each solved problem, a macro-operator is created using a triangular
table [9]. In Figure 2 (a) and (b) we can see two examples of simple operators
in the Blocksworld domain.

The Blocksworld domain used in the second IPC consists of a set of blocks
that are all of the same size, a table and a robot arm. The robot arm can pick
up a single block from the table and stack it on another clear block. Also it can
unstack a clear block and put down a block on the table. The table can hold an
infinite number of blocks.

Figure 2 (a) shows the operator that allows the robot to pick up a block from
the table, and with the Figure 2 (b) shows the operator that allows the robot
to stack a block on top of another block. The macro-operator composed of these
two simple operators can be seen in Figure 2 (c). All variables refered to in the
examples are written within brackets.

The main drawback of macro-operators is the utility problem [2,10]: adding
macro-operators can increase the branching factor and the processing cost per
node, without necessarily improving search performance.

Including a partial ordering of the operators in the macro-operator or com-
bining the use of macro-operators with techniques such as the relaxed graphplan
computation implemented in FF, can show significant improvements in different
domains [3,8].

Based on that work we also filter macro-operators using, as utility measure,
the frequency of appearance of several simple operators sequentially together in
a set of obtained solution plans. These total-ordered plans are generated from
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(OPERATOR PICK-UP (params <ob1>)
(preconds
((<ob1> object))
(and (clear <ob1>)

(on-table <ob1>)
(arm-empty)))

(effects ()
((del (on-table <ob1>))
(del (clear <ob1>))
(del (arm-empty))
(add (holding <ob1>)))))

(OPERATOR STACK (params <ob> <underob>)
(preconds

((<ob> object)
(<underob> object))

(and (clear <underob>)
(holding <ob>)))

(effects ()
((del (holding <ob>))
(del (clear <underob>))
(add (arm-empty))
(add (clear <ob> ))
(add (on <ob> <underob>)))))

(a) pickup operator (b) stack operator

(OPERATOR m2-2-pickup-stack
(params <e-object> <d-object>)
(preconds ((<d-object> object)

(<e-object> object))
(and

(clear <d-object>)
(clear <e-object>)
(on-table <e-object>)
(arm-empty)))

(effects nil
((add (on <e-object> <d-object>))
(del (clear <d-object>))
(del (on-table <e-object>)))))

(c) pickup+stack macro-operator

Fig. 2. Example of two simple operators and the corresponding macro-operator in the
Blocksworld domain

solving a set of random training problems. The six more common combinations
of two and three simple operators are selected.

2.3 The HAMLET Learning Module

Hamlet is an incremental learning method based on ebl (Explanation Based
Learning) and inductive refinement of control rules [4]. The main inputs of ham-

let are a domain and a set of training problems. hamlet calls ipss and receives
as input the search tree expanded by the planner in order to decide where and
what to learn. hamlet’s output is a set of control-rules that potentially guide
the planner towards good quality solutions.

In Figure 3 we can see an example of a control rule in the Blocksworld domain.
Each control rule has an if-part and a then-part. The if-part refers to conditions
about the meta-states of the search process that can include conditions refering
to the current state, the goal in which the planner is working on or the operator
that can achieve a given goal. These conditions are represented using meta-
predicates, such as true-in-state, current-goal and some-candidate-goals shown
in Figure 3. Some meta predicates can have as arguments literals from the state,
such as clear of arm-empty. Other arguments can be types or operator names.
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The then-part describes what decision should be made and how. hamlet has five
kinds of control rules, corresponding to prodigy’s decisions: apply an operator,
decide to subgoal, select an unachieved goal, select an operator and select a
binding for an operator (the target concepts). The rule in Figure 3 selects the
unstack operator for achieving the goal of clearing an object when that object
currently is under another one.

(control-rule INDUCED-SELECT-UNSTACK
(if (and (current-goal (clear <object-2>))

(true-in-state (on <object-1> <object-2>))
(type-of-object <object-1> object)
(type-of-object <object-2> object)))

(then select operators unstack))

Fig. 3. Example of control rule in the Blocksworld domain

Hamlet has two main modules: the Bounded Explanation and the Refine-
ment modules. The first module uses the decisions made by the planner after
solving the training problems in order to generate control rules. The second mod-
ule performs incremental inductive refinement of rules. First, hamlet generalizes
control rules, as soon as it finds more examples of the same target concept. In
this case, it tries to apply the following main steps: (i) intersect preconditions
of two rules of the same target concept; (ii) delete rules that are subsumed by
others; and (iii) unify two rules that are similar except for two variables of which
subtypes belong to a common type.

Also it analyses negative examples (when applying a control rule leads to a
failure or a worse solution than the best one expected) to make more specific
the overly-general control rules. When a negative example of a control rule is
found, hamlet redefines the rule using the following steps, until the rule does
not subsume a negative example: (i) use different substitution from the ones
used for intersecting two more specific rules; (ii) add one literal refering to the
state to the preconditions; (iii) specialize the type of objects; and (iv) delete the
most general control rule.

A more detailed definition and some examples of generalization and special-
ization can be found in [11]. The reader can also find there comparative results
to other ILP systems, showing that hamlet outperforms other ilp techniques
such as FOIL or PROGOL, on this learning task.

3 Experimental Setup

In this work, we have used macro-operators and control rules together, with
the aim of generating control rules that define when a specific macro-operator
shall be used. To select the macros and rules for the experiments, two automated
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steps have been developed. Finally, we compare our results to the two learning
techniques separately. These steps are the following:

1. The first step is to generate and select some macro-operators composed by
two and three simple operators. We have bounded the number of operators
that can appear in a macro-operator by an experimental analysis of the type
of macro-operators that are more useful, which is also based on the work
of [3]. We provide ipss a set of random training problems to be solved. From
the resulting total-ordered plans, all the different combinations of two and
three operators are obtained. These operators must appear in sequence and
have, at least, one object in common. The three most common sequences of
each size are selected for the second step.

In Figure 4 we can see an example of a solution plan in the Logistics
domain, where all possible macros composed by two simple operators have
been shown. The most common macro-operators from all solution plans will
be selected for the experiments.

Solution:

unstack f b

put-down f

pick-up j

stack j b

unstack i c

put-down i

pick-up c

stack c i

pick-up d

stack d c

The most common macro-operators

of size 2 in this solution plan are:

• pick-up + stack (3)

• unstack + put-down (2)

Fig. 4. Example to obtain the most common macros of size 2 from a solution plan

2. The next step consists of learning control rules when the domain is expanded
with each macro-operator separately,1 using always the same training set of
random problems. We also learn control rules using the original domain
(without macro-operators) for comparison.

3. Finally, the same test set is used for each resulting domain: (i) the original
domain, (ii) the domain with each selected macro-operator, (iii) the original
domain with its own learned control rules, and (iv) the macro-operators and
the control rules together. In Figure 5 we can see the four approaches.

1 Each macro-operator is pushed into the operator list in the domain definition. Since
the default decision of the planner is always to select the first possible operator
found in the domain for achieving each goal, this will force the planner to select the
macro-operator as the first option.
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Fig. 5. Scheme of the four approaches applied for the experiments

4 Experiments

This section describes the experiments performed in some of the planning do-
mains used in the IPC: Zeno-travel, Logistics, Miconic, Blocksworld and Satellite
domains. We set the time bound to 30 seconds for solving problems both when
learning and training. We now describe each domain separately.

4.1 Zeno-Travel

The objective in the Zeno-travel domain is to transport people from a city to
another one by aircrafts, which need some fuel to fly. The operators are: board a
person into an aircraft in a city; depart a person from an aircraft into a city; fly an
aircraft from a city to another city; zoom that flies an aircraft faster (consuming
more fuel) from a city to another one; and refuel the aircraft in a city.

We used:

– Macro-operator learning set: 25 random problems. The first one with one
goal, the next 20 problems with two goals and the last four with three goals.
Each one of them is described by an average of 10 literals and 2.1 goals.

– Control-rules learning set: 100 random problems, 75 with two goals and 25
with three. An average of 10 literals and 2.3 goals describe each problem.

– Test set: 170 random problems. All of them have two aircrafts, from seven
up to 15 people, three cities, seven levels of fuel and from three up to 14
goals. Each test problem is composed by an average of 20.7 literals and 7.4
goals.
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The macro-operators obtained after filtering were:

1. Macro m2-1: refuel fly
2. Macro m2-2: fly debark
3. Macro m2-3: board refuel
4. Macro m3-1: refuel fly debark
5. Macro m3-2: board refuel fly
6. Macro m3-3: fly board refuel

In Table 1 we show the results in the Zeno-travel domain, Z, without or with
an specific macro-operator. In the first multicolumn, ipss, we can see the number
of solved problems, the accumulated time in seconds of the solved problems and
the accumulated cost of the solutions, computed as the number of simple oper-
ators on them by the planner alone (first row) and with each macro-operator
(remaining rows). The next multicolumn, hamlet, presents the same results
using the learned control rules in each case and the number of learned control
rules. The third column, Worse using rules, refers to the number of problems not
solved with rules that were solved without them. The last column, Better using
rules, shows the number of new problems solved thanks to the control rules.

Table 1. Results of a test set with 170 random problems in the Zeno-travel domain

Domain ipss hamlet Worse using rules Better using rules
Solved Time Cost Solved Time Cost Rules Unsolved Solved

Z 0 0 0 0 0 0 3 0 0
Z+m2-1 154 37.74 4439 156 50.67 4499 2 0 2
Z+m2-2 6 5.16 123 6 5.16 123 0 0 0
Z+m2-3 76 28.29 3203 76 28.29 3203 0 0 0
Z+m3-1 15 4.15 294 18 6.68 370 2 0 3
Z+m3-2 12 4.77 272 38 89.16 1387 6 5 31
Z+m3-3 82 81.62 3407 84 85.71 3327 2 0 2

As we can see in Table 1, when using ipss alone, no problem was solved in
the time bound of 30 seconds. If we apply hamlet, although we learn three
rules, no problem was solved either. This is an example where control rules are
not useful. However, after modifying the domain with the respective macro-
operators, results are improved. Some macro-operators are better than others,
such as m2-1, m2-3 and m3-3, reaching a percentage of solved problems of 91,
45 and 48%, respectively. In all cases using both macro-operators and control
rules, results improve in terms of solved problems.

To understand why a macro-operator works better than another one, we com-
pare in this domain the best one, refuel+fly, to the worst one, fly+debark. Let
us suppose that the current goal is to fly from city1 to city2. Refuel+fly will
be selected to achieve the goal of being at city2 and, besides, the tank of the
aircraft is refueled. But this second effect does not achieve any other goal and
it is always necessary to fly. That is, every time an aircraft flies, it is going to
need fuel. Let us suppose now that the current goal is to refuel the tank of an
aircraft. When we use refuel+fly, the tank of the aircraft refuels and it flies too.
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The only possibility in this domain to need fuel occurs when we are going to fly,
so the macro-operator is well applied in this case too.

Using the second macro-operator fly+debark the situation is different. In Fig-
ure 6 (a) we can see an example where the current goal is to fly from city0 to
city1, maybe to pick a person up. By selecting fly+debark, we add the goal of
having someone inside the aircraft, although we do not need anyone really in
case we do not have any person inside the airplane. The second situation can be
seen in Figure 6 (b), where the current goal is to debark person0 from aircraft0
in city0. The macro-operator fly+debark is selected to debark the person0 in
city0, what forces aircraft0 to fly to another city before.

City0 City1

Aircraft0

goal

(a)

City0 City1

Person0
Aircraft0

current-goal

(b)

City0 City1

Person0
Aircraft0

Fuel1
goal

(c)

City0 City1

Person0

Aircraft0

Fuel1

goal

(d)

current-goal

Fig. 6. Examples of problems in the Zeno-travel domain

Also to study the behaviour of the control rules learned in the third step,
we show an example. If we run the planner with the original domain using the
macro-operator m3-1, that is refuel+fly+debark, it can solve 15 problems, and
with their two learned control rules, it can solve three problems more. One of
these two rules can be seen in Figure 7.

(control-rule INDUCED-SELECT-FLY
(if (and (current-goal (at <aircraft-3> <city-4>))

(true-in-state (at <aircraft-3> <city-1>))
(true-in-state (fuel-level <aircraft-3> <flevel-2>))
(some-candidate-goals nil)
(type-of-object <flevel-2> flevel)
(type-of-object <city-1> city)
(type-of-object <city-4> city)
(type-of-object <aircraft-3> aircraft)))

(then select operators fly))

Fig. 7. Control rule learned in the Zeno-travel domain with the macro-operator re-
fuel+fly+debark

This rule says that if there is an aircraft in a city and the current goal is
to have it in another city (variables city1 and city4 must be bound to different
values), the planner should select the operator fly. That could be obvious, but it
is important, given that without it the planner will always choose first to use the
macro-operator refuel+fly+debark, because it appears in the domain description
before the simple operator fly.
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In Figure 6 (c) we can see a part of a problem, where we have an aircraft0
in a city0 and a person0 in a city1. The goal is to take this person to city0.
Given that the planner follows a backward chaining process, the task would be
to debark this person in the final city0, and the first operator that provides this
is the macro refuel+fly+debark, flying from city1 to city0 with the person. After
that the two goals to reach are: (i) to have the person0 into the aircraft0 and
(ii) to have the aircraft0 in city1. To reach (i), the only operator that provides
it is board person0 into aircraft0. The next goals to reach are: (iii) to have the
person0 in the city1, that is true from the begining, and (iv) to have aircraft0
in city1, similar to goal (ii).

Now, to reach (ii) and without the second rule, refuel+fly+debark would be
applied first, which means, besides refuel and fly, to take an extra person to be
debarked. At this moment, the planner tries to find this second person only to
have the aircraft in city1. This is not a good option and the planner ends without
finding a solution in 30 seconds.

However, if we use the second rule seen before, the fly operator from city0
to city1 will be selected, and we would have finished. This rule does not select
a macro-operator but selects an operator to avoid a macro-operator. This is a
good induced (generalized in several steps) control rule that helps the planner
to guide the search.

The control rules can work worse in other examples, such as the five cases
where the macro-operator m3-2, board+refuel+fly, and their six resulting control
rules are used. These cases are harder to explain because they include many
goals and many objects. In Figure 6 (d) we can see a small example where the
control rule has not the expected effects. We can see this control rule in Figure 8.
It says that if there is an aircraft in a city and the current goal is to have the
aircraft in another city, it must select the fly operator. In the example of Figure 6
(d), the current goal is to have airplane1 in city1, maybe to pick someone up.
The control rule will be fired, although it would be better to apply the macro-
operator because the final goal for person1 is to be in city1 too. Finding the
right conditions to be inserted into the if-part of the rule is a hard problem and
it is not easier for standard ILP techniques either [11].

(control-rule SELECT-FLY-L157-03-MAROB-61860753
(if (and (current-goal (at <aircraft-1> <city-2>))

(true-in-state (at <aircraft-1> <city-5>))
(true-in-state (next <flevel-6> <flevel-12>))
(true-in-state (fuel-level <aircraft-1> <flevel-6>))
(some-candidate-goals nil)
(type-of-object <aircraft-1> aircraft)
(type-of-object <city-2> city)
(type-of-object <city-5> city)
(type-of-object <flevel-6> flevel)
(type-of-object <flevel-12> flevel)))

(then select operators fly))

Fig. 8. Control rule learned in the Zeno-travel domain with the macro-operator
board+refuel+fly
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Although the rules learned for board+refuel+fly work worse in five problems,
they solve 31 new problems that were not solved without them.

4.2 Logistics

The goal in this domain is to carry packages from one place to another one.
These places can be post-offices or airports that are inside cities. Each package
can be carried by trucks, from one place to another one in the same city, or
by airplanes, from an airport to another airport, that can be in different cities.
The operators are: load-truck, loads a package in a truck; load-airplane, loads a
package in an airplane; unload-truck; unload-airplane; drive-truck, a truck drives
from a place to another one in the same city; and fly-airplane an airplane flies
from an airport to another.

We use the version of the Logistics domain, as was first defined [12]. The main
difference with the first IPC version is that the predicates for describing where
packages, trucks and airplanes are have changed from the specific at-object, at-
truck and at-airplane in our version to the generic at in the IPC version.

We have used a random problem generator to create different problem sets
for learning and test. To learn the macro-operators and the control rules we
have used the same set of 30 random problems with three cities, three objects
and a maximum of three goals. Each one of them is described by an average of
20.7 literals and 1.3 goals. The test set is composed by 70 random problems.
The first 30 have seven cities, 10 objects and from one to 10 goals. The next 40
problems are more complex. 10 of them are of type (3, 5, 5), other 10 are (5,
10, 10), the next 10 problems are (8, 15, 15) and the last 10 are (10, 20, 20),
where (c, o, g) refers to number or cities (c), number of objects (o) and number
of goals (g) respectively. An average of 47.3 literals and nine goals describe each
test problem.

The complete list of learned macro-operators obtained in the second step are
the following: (m2-1) drive-truck+unload-truck; (m2-2) fly-airplane+unload-
airplane; (m2-3) load-truck+drive-truck; (m3-1) load-truck+drive-truck+
unload-truck; (m3-2) drive-truck+load-truck+drive-truck; and (m3-3) load-
airplane+fly-airplane+unload-airplane.

Table 4 shows the results of solving the test problems in the same format that
in the previous Table 1. We can observe that m2-2 and m3-3 improve the number
of solved problems with respect to using the planner alone or with control rules.
In all cases, using hamlet the number of solved problems increases. Except for
the original domain without macros, where the time to solve the problem with
control rules is much lower than without them. For the rest, the time increases
using control rules, and also the cost. This is caused by the utility problem again.

4.3 Miconic

The version of this domain is the one used in the IPC-2000 with a change done
in the domain definition reported in [13]. Also we used the 150 problems of IPC.
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Table 2. Results of a test set with 70 random problems in the Logistics domain

Domain ipss hamlet Worse using rules Better using rules
Solved Time Cost Solved Time Cost Rules Unsolved Solved

L 7 34.67 94 8 1.62 82 9 2 3
L+m2-1 4 0.72 25 6 0.77 40 4 0 2
L+m2-2 18 7.17 560 25 9.73 565 8 1 8
L+m2-3 3 0.17 14 3 0.17 14 6 0 0
L+m3-1 4 0.92 19 6 1.48 36 4 0 2
L+m3-2 6 22.5 64 6 22.5 64 9 0 0
L+m3-3 11 20.9 279 46 50.96 1690 9 0 35

In this domain there are two types of objects: passengers and floors. The goal is
to bring people using an elevator to different floors. The operators are: board a
person into the elevator in a floor; depart a person from the elevator in a floor;
move up the elevator from a floor to a higher floor; and move down the elevator
from a floor to a lower floor.

A set of 15 random problems with two up to six floors was used to learn
the macros. Each problem is composed by an average of 12.3 literals and two
goals. The 10 most simple problems of the 150 problems of the competition have
been used to learn the control rules in hamlet, which are problems with two
and four floors and have an average of 7.5 literals and 1.5 goals. The rest 140
problems of the competition have been used to test and are problems with from
six up to 60 floors. An average of 692.5 literals and 16.5 goals describe each test
problem.

The learned macro-operators in the second step are: (m2-1) up+board;
(m2-2) board+down; (m2-3) down+depart; (m3-1) board+down+depart; (m3-2)
up+board+down; and (m3-3) board+up+depart.

Table 3 shows the results of solving the test problems in the same previous
format. We can find two macro-operators with a very bad behaviour, m2-2 and
m3-2, also using their learned control rules. In this domain, we can find two other
cases, such as m2-1 and m2-3, in which, using control rules, the total number
of solved problems decreases, by one and two problems respectively. We can
observe the macro-opeator m3-1 that, using control rules, the number of solved
problems increases in four and the time to solve them decreases in more than
seven seconds.

Table 3. Results of a test set with 140 random problems in the Miconic domain

Domain ipss hamlet Worse using rules Better using rules
Solved Time Cost Solved Time Cost Rules Unsolved Solved

M 4 6.17 117 14 7.07 566 2 0 10
M+m2-1 22 42.2 1330 21 34.62 1172 4 8 7
M+m2-2 1 0.06 7 2 0.43 15 3 0 1
M+m2-3 16 8.53 449 14 16.25 342 3 2 0
M+m3-1 6 25.99 92 10 18.44 162 3 0 4
M+m3-2 2 0.14 16 5 0.44 45 3 0 3
M+m3-3 21 7.04 594 23 12.45 731 3 0 2
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4.4 Blocksworld

We have used a random problem generator to create the set of problems. The
problem set to learn macro-operators is composed of 30 problems, 10 of them
are (5, 2), other 10 are (5, 3) and the last 10 are (10, 4), where (b, g) refers
to number of blocks (b) and number of goals (g) respectively. Each problem is
composed by an average of 10.5 literals and 3.2 goals. The problem set to learn
control rules is similar to the one used for learning macro-operators. The test
set is composed of 160 problems. There are eight subsets of 20 problems: (5, 1),
(5, 2), (10, 3), (10, 5), (15, 10), (25, 15), (30, 20) and (55, 50). An average of
26.9 literals and 13.3 goals describe each test problem.

The macro-operators obtained in the Blocksworld domain are the following:
(m2-1) unstack+putdown; (m2-2) pickup+stack; (m2-3) unstack+stack; (m3-1)
unstack+putdown+unstack; (m3-2) unstack+putdown+pickup; and (m3-3)
putdown+pickup+stack.

The results of solving the test problems can be seen in Table 4. In the
Blocksworld domain, there is only one macro-operator, m2-1, that improves the
results of the planner alone. However, the number of solved problems after ap-
plying the control rules is lower than without them. In the rest of the cases,
although the results do not improve the one of using the planner alone or with
their control rules, the number of solved problems does increase when hamlet

is used. The time using control-rules decreases in the last case, from 87 to 20
seconds, although it solves five problems more. There are four problems solved
without rules too, that needed around 15 seconds to be solved for each one.

Table 4. Results of a test set with 160 random problems in the Blocksworld domain

Domain ipss hamlet Worse using rules Better using rules
Solved Time Cost Solved Time Cost Rules Unsolved Solved

B 69 124.21 472 73 115.55 573 5 5 9
B+m2-1 119 78.36 1899 112 122.31 1462 8 10 3
B+m2-2 65 172.55 393 68 181.28 454 6 6 9
B+m2-3 45 21.02 234 47 62.38 265 3 1 3
B+m3-1 53 34.29 340 53 34.29 340 0 0 0
B+m3-2 28 22.04 122 36 75.36 182 9 0 8
B+m3-3 30 87.68 131 35 20.02 135 7 4 9

4.5 Satellite

The Satellite domain involves a collection of observation tasks between multiple
satellites, each equipped with different instruments. Satellites can point to differ-
ent directions (turn-to), supply power to one selected instrument (switch-on and
switch-off), calibrate it to one target and take-image of a target. This domain is
the one used in the IPC-2002. We also use the IPC problems as test set.

To learn macros we have used 30 random problems, with one satellite, two
instruments and with from one up to three goals. Each one of them is described
by an average of 10 literals and 1.8 goals. To learn control rules only six prob-
lems have been used with from one up to three satellites, from two up to nine
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instruments, and from three up to eight goals. The average of literals and goals
for each problem are 21.2 and 5.3 respectively. The test set is composed of 36
problems with from four up to 10 satellites, and from nine up to 123 goals, with
an average of 77.4 literals and 52.4 goals to describe each test problem.

The macro-operators obtained in the Satellite domain are: (m2-1) turn-to+
take-image; (m2-2) switch-on+turn-to; (m2-3) turn-to+calibrate; (m3-1) switch-
on+turn-to+calibrate; (m3-2) calibrate+turn-to+take-image; and (m3-3)
turn-to+calibrate+turn-to.

The results of solving the test problems can be seen in Table 5. In this domain
no macro-operator alone or combination of macro-operator and control rules
improves the results obtained with the planner alone, which solves 100% of the
problems. The only good behaviour is using the macro m2-1 when control rules
are used.

Table 5. Results of a test set with 36 random problems in the Satellite domain

Domain ipss hamlet Worse using rules Better using rules
Solved Time Cost Solved Time Cost Rules Unsolved Solved

S 36 110.75 4453 36 110.75 4453 0 0 0
S+m2-1 0 0 0 22 106.54 1766 1 0 22
S+m2-2 0 0 0 0 0 0 0 0 0
S+m2-3 24 103.16 2707 23 71.98 2384 1 1 0
S+m3-1 27 117.54 4453 21 71.07 2101 3 6 0
S+m3-2 8 38.86 1303 8 17.74 533 3 5 5
S+m3-3 23 129.77 319 23 129.77 319 0 0 0

5 Conclusions and Future Work

In this paper, we propose to learn control rules using an ilp-based approach
after learning macro-operators. These control rules have been obtained by the
relational learning system hamlet, which finds a set of rules that are able to
decide when to use the acquired macro-operators. The experiments have been
made in several classical domains in planning.

In this paper, we have shown that the combination of macro-operators and
control rules obtained from a relational learning technique can improve the re-
sults of the ipss planner alone. We have also shown that the different learned
macro-operators do not always outperform the results of the base planner. How-
ever, in most cases, when learned control rules are applied over a good resulting
macro-operator, the results improve over using the macro-operator alone.

Also, there are many domains in which this integration must be tested and
we have to increase even more the number of simple operators that compose the
used macro-operators.
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Abstract. The class of frequent hypergraph mining problems is
introduced which includes the frequent graph mining problem class and
contains also the frequent itemset mining problem. We study the com-
putational properties of different problems belonging to this class. In
particular, besides negative results, we present practically relevant prob-
lems that can be solved in incremental-polynomial time. Some of our
practical algorithms are obtained by reductions to frequent graph min-
ing and itemset mining problems. Our experimental results in the domain
of citation analysis show the potential of the framework on problems that
have no natural representation as an ordinary graph.

1 Introduction

The field of data mining has studied increasingly expressive representations in
the past few years. Whereas the original formulation of frequent pattern mining
still employed itemsets [1], researchers have soon studied more expressive rep-
resentations such as sequences and episodes (e.g., [16]), trees (e.g., [4,21]), and
more recently, graph mining has become an important focus of research (e.g.,
[13,18,19]). These developments have been motivated and accompanied by new
and challenging application areas. Indeed, itemsets apply to basket-analysis, se-
quences and episodes to alarm monitoring, trees to document mining, and graph
mining to applications in computational chemistry.

In this paper, we introduce the next natural step in this evolution: the mining
of labeled hypergraphs. In a similar way that tree mining generalizes sequence
mining, and graph mining generalizes tree mining, hypergraph mining is a nat-
ural generalization of frequent pattern mining in undirected graphs. The pre-
sented framework is especially applicable to problem domains which do not have
a natural representation as ordinary graphs. One such application is used in the
experimental section of this paper. It is concerned with citation analysis, more
specifically, with analyzing bibliographies of a set of papers. The bibliography
of a paper can be viewed as a hypergraph, in which each author corresponds to
a vertex and each paper to the hyperedge containing all authors of the paper.
� An early version of this paper appeared in T. Gärtner, G.C. Garriga, and T. Meinl
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By mining for frequent subhypergraphs in the bibliographies of a set of papers
(e.g. past KDD conference papers), one should be able to discover common cita-
tion patterns in a particular domain (such as SIGKDD). These patterns might
then be employed in a recommender system that assists scientists while mak-
ing bibliographies. A similar approach in a basket-analysis context allows one to
represent the transactions over a specific period of time of one family as a hyper-
graph, where the products correspond to the vertices and the transactions to the
hyperedges. Mining such data could provide insight into the overall purchasing
behavior of families.

The main contribution of this paper is the introduction of a general frame-
work of mining frequent hypergraphs. The framework can be specialized in a
number of different ways, according to the notion of the generalization relation
employed as well as the class of hypergraphs considered. We consider different
problems where the generalization relation is defined by subhypergraph isomor-
phism, study their computational properties, and present positive and negative
results. More specifically, we show that there is no output-polynomial time al-
gorithm for mining frequent connected subhypergraphs, and even in the case of
strong structural assumptions on the hyperedges, this problem cannot be solved
efficiently by the usual level-wise frequent pattern mining approach (see, e.g.,
[15]). On the other hand, by restricting the functions labeling the vertices, we
achieve positive results. Some of the results are obtained by employing reduc-
tions from frequent hypergraph mining problems to ordinary graph mining and
itemset mining problems. We also present experiments in the above sketched
citation analysis domain which indicate that these reductions can effectively be
applied in practice. Essentially, we gathered the bibliographies of 5 SIGKDD,
30 SIGMOD, and 30 SIGGRAPH conferences and searched for frequent hyper-
graphs in each conference.

The rest of the paper is organized as follows: in Section 2, we introduce the
necessary notions concerning hypergraphs and in Section 3, we define the prob-
lem class of frequent hypergraph mining. In Section 4, we study the frequent
subhypergraph mining problem. In Section 5, we present some experiments us-
ing the citation analysis problem, and finally, in Section 6, we conclude and list
some problems for future work. Due to space limitations, some of the proofs are
only sketched in this version.

2 Notions and Notations

We recall some basic notions and notations related to graphs and hypergraphs
(see, e.g., [2,6]). For a set S and non-negative integer k, [S]k denotes the family
of all k-subsets of S, i.e., [S]k = {S′ ⊆ S : |S′| = k}.

Graphs and Hypergraphs. An (undirected) graph G consists of a finite set
V of vertices and a family E ⊆ [V ]2 of edges. G is bipartite if G has a vertex
2-coloring, i.e., if V admits a partition into V1 and V2 such that E /∈ [V1]2∪ [V2]2

for every E ∈ E . A hypergraph H is a pair (V, E), where V is a finite set and E is a
family of nonempty subsets of V such that

⋃
E∈E E = V . The elements of V and
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E are called vertices and edges (or hyperedges), respectively. H is r-uniform for
some integer r > 0 if E ⊆ [V ]r. The rank of H , denoted r(H), is the cardinality
of its largest hyperedge, i.e., r(H) = maxE∈E |E|, and the size of H , denoted
size(H), is the number of hyperedges of H , i.e., size(H) = |E|.

By definition, a hyperedge may contain one or more vertices. Note that ordi-
nary undirected graphs without isolated vertices form a special case of hyper-
graphs, i.e., the class of 2-uniform hypergraphs. We note that every hypergraph
H = (V, E) can be represented by a bipartite incidence graph B(H) = (V ∪E , E ′),
where E ′ = {{v, E} : v ∈ V, E ∈ E , and v ∈ E}.

Labeled Hypergraphs. A labeled hypergraph is a triple H = (V, E , λ), where
(V, E) is a hypergraph, and λ : V → N is a labeling function1. Unless otherwise
stated, by hypergraphs (resp. graphs) we always mean labeled hypergraphs (resp.
labeled graphs), and denote the set of vertices, the set of edges, and the labeling
function of a hypergraph (resp. graph) H by VH , EH , and λH , respectively. The
set of all hypergraphs is denoted by H and Hr denotes the set of all r-uniform
hypergraphs. For a hypergraph H ∈ H and subset V ′ ⊆ VH , we denote the
multiset2 {λH(v) : v ∈ V ′} by λH(V ′). A path connecting the vertices u, v ∈ VH is
a sequence E1, . . . , Ek of edges of H such that u ∈ E1, v ∈ Ek, and Ei∩Ei+1 �= ∅
for every i = 1, . . . , k − 1. A hypergraph is connected if there is a path between
any pair of its vertices. The set of connected hypergraphs is denoted by Hc.
Clearly, Hc ⊂ H.

Injective Hypergraphs. Depending on the labeling functions, in this paper we
will consider two special classes of hypergraphs. A hypergraph H ∈ H is node
injective if λH is injective, and it is edge injective whenever λH(E) = λH(E′)
if and only if E = E′ for every E, E′ ∈ EH . The sets of node and edge injective
hypergraphswill be denoted byHni andHei, respectively. Clearly,Hni ⊆ Hei ⊆ H.

Hypergraph Isomorphism. Let H1, H2 ∈ H be hypergraphs. H1 and H2 are
called isomorphic, denoted by H1 � H2, if there is a bijection ϕ : VH1 → VH2

such that

– ϕ preserves the labels, i.e., λH1(v) = λH2(ϕ(v)) for every v ∈ VH1 , and
– ϕ preserves the hyperedges in both directions, i.e., for every E ⊆ VH1 it

holds that E ∈ EH1 if and only if {ϕ(v) : v ∈ E} ∈ EH2 .

Throughout this paper, two hypergraphs H1 and H2 are considered to be the
same if H1 � H2.

1 We will only consider labeling functions defined on the vertex set because any hy-
pergraph H = (V, E , λ) with λ : V ∪ E → N satisfying λ(v) �= λ(E) for every
v ∈ V and E ∈ E can be transformed into a hypergraph H ′ = (V ′, E ′, λ′) with
V ′ = V ∪ {vE : E ∈ E}, E ′ = {E ∪ {vE} : E ∈ E}, and with λ′ : V ′ → N mapping
every new vertex vE ∈ V ′ \ V to λ(E) and every v ∈ V to λ(v).

2 A multiset M is a pair (S, f), where S is a set and f defines the multiplicity of the
elements of S in M , i.e., f is a function mapping S to the cardinal numbers greater
than 0.
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Subhypergraphs. A subhypergraph of a hypergraph H ∈ H is a hypergraph
H ′ ∈ H satisfying VH′ ⊆ VH , EH′ ⊆ EH , and λH′ (v) = λH(v) for every v ∈ VH′ .

3 Frequent Hypergraph Mining

Many problems in data mining can be viewed as a special case of the problem of
enumerating the elements of a quasiordered set3, which satisfy some monotone
property (see, e.g., [3,12]). In this section, we define a new class of subproblems
of this enumeration problem, the class of frequent hypergraph mining problems.
In the next section, we then discuss the computational aspects of some problems
belonging to this class. We start with the definition of a more general problem
class.

The Frequent Pattern Mining Problem Class (CFPM): Each problem belonging
to this class is given by a fixed triple (LD,LP , �), where LD is a transaction
language, LP is a pattern language, and �, called the generalization relation,
is a quasiorder on LD ∪ LP . For such a triple, the (LD,LP , �)-Frequent-

Pattern-Mining problem is defined as follows: Given a finite set D ⊆ LD

of transactions and an integer t > 0, called frequency threshold, compute the
set F(LD,LP ,�)(D, t) of frequent patterns defined by

F(LD,LP ,�)(D, t) = {ϕ ∈ LP : |{τ ∈ D : ϕ � τ}| ≥ t} .

The transitivity of � implies that frequency is a monotone property, i.e., for every
ϕ, θ ∈ LP it holds that θ ∈ F(LD,LP ,�)(D, t) whenever ϕ ∈ F(LD,LP ,�)(D, t) and
θ � ϕ.

We now define two subclasses of CFPM by restricting the transaction and
pattern languages to hypergraphs (CFHM) and graphs (CFGM).

The Frequent Hypergraph Mining Problem Class (CFHM): It consists of the set
of (LD,LP , �)-Frequent-Pattern-Mining problems, where LD,LP ⊆ H
(i.e., LD and LP are sets of labeled hypergraphs).

The Frequent Graph Mining Problem Class (CFGM): It is the set of (LD,LP , �)-
Frequent-Pattern-Mining problems, where LD,LP ⊆ H2 (i.e., LD and
LP are sets of labeled graphs).

Clearly, CFGM � CFHM � CFPM. It also holds that the frequent itemset mining
problem [1] belongs to CFPM; for this problem we have LD = LP = {X ⊂ N :
|X | < ∞} and � is the subset relation. In fact, the frequent itemset mining
problem is contained by CFHM. Indeed, this problem can be considered as the
(Hni

1 ,Hni
1 , �)-Frequent-Hypergraph-Mining problem, where � is the sub-

hypergraph relation and the transaction and pattern languages are the set of
1-uniform node injective hypergraphs.

3 A binary relation is a quasiorder (or preorder), if it is reflexive and transitive.
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The parameter of a (LD,LP , �)-Frequent-Hypergraph-Mining problem
formulated above is the size of D defined by

size(D) = max

{
∑

H∈D
size(H), max

H∈D
r(H)

}

.

Note that the size of the output, i.e. the set to be enumerated, can be exponential
in the size of the input. Because in such cases, it is impossible to compute them
in time polynomial only in the size of the input, we investigate whether the
enumeration problems can be solved in incremental polynomial time or at least
in output-polynomial time (or polynomial total time) (see, e.g., [9,14]). In the
first, more restrictive case, the algorithm is required to list the first N elements
of the output in time polynomial in the combined size of the input and the set
of these N elements for every integer N > 0. In the second, more liberal case,
the algorithm has to solve the problem in time polynomial in the combined
size of the input and the entire set to be enumerated. Note that the class of
output-polynomial time algorithms entails the class of incremental polynomial
time algorithms.

To sketch the relation among frequent pattern mining problems, we need the
notion of polynomial reduction. More precisely, we say that the frequent pattern
mining problem P1 = (LD,1,LP,1, �1) is polynomially reducible to the frequent
pattern mining problem P2 = (LD,2,LP,2, �2) if there exist functions

g : 2LD,1 × N → 2LD,2 × N and f : LP,2 → LP,1

satisfying the following properties:

(i) |F(LD,1,LP,1,�1)(I)| = |F(LD,2,LP,2,�2)(g(I))| for every I ∈ 2LD,1 × N,

(ii) f is injective, and

(iii) g and f can be computed in polynomial time.

That is, a pattern ϕ ∈ LP,1 is frequent for I if and only if it is the image (under
f) of a pattern ϕ′ ∈ LP,2 which is frequent for g(I). Thus, if P1 is polynomial-
time reducible to P2 then any enumeration algorithm solving P2 in incremental
polynomial (resp. output-polynomial) time can be used to solve P1 in incremental
polynomial (resp. output-polynomial) time.

Clearly, several frequent hypergraph mining problems, even frequent graph
mining problems, cannot be solved in output-polynomial time (unless P = NP).
In Proposition 1 below we present a simple example of such a hard problem.

Proposition 1. Let LD ⊆ H2 and let LP ⊆ H2 be the set of complete graphs
such that every vertex of every graph in LD ∪LP is labeled by the same symbol,
say 1, and let � be the homomorphism �h between labeled graphs4. Then, unless
P = NP, the (LD,LP , �h)-Frequent-Graph-Mining problem cannot be solved
in output polynomial time.
4 A homomorphism from a hypergraph H1 ∈ H to a hypergraph H2 ∈ H, denoted

H1 �h H2, is a function ϕ : VH1 → VH2 preserving the labels and edges.
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Proof. Let G = (V, E) be an unlabeled graph and let G′ be the labeled graph
obtained from G by assigning 1 to each vertex of G. Then, for D = {G′} and
t = 1, we have that G has a clique of size k if and only if there is a pattern C ∈
F(LD,LP ,�h)(D, t) with k vertices. Since |F(LD,LP ,�h)(D, t)| ≤ |V |, the size of the
output is bounded by a polynomial of the input parameters. But this implies that
the (LD,LP , �h)-Frequent-Graph-Mining problem cannot be computed in
output polynomial time (unless P = NP), as otherwise the maximum clique prob-
lem5 could be decided in polynomial time by computing first F(LD,LP ,�h)(D, t)
and then the pattern of maximum size from F(LD ,LP ,�h)(D, t). $%

4 Frequent Subhypergraph Mining

By Proposition 1, the class CFGM, and thus the more general class CFHM as
well, contains problems that cannot be solved in output polynomial time (un-
less P = NP). This negative result raises the challenge of identifying practically
relevant and tractable problems belonging to CFHM. In this section, we take a
first step towards this direction by considering the problem of frequent hyper-
graph mining w.r.t. subhypergraph isomorphism. This problem, called frequent
subhypergraph mining, is a natural problem of the frequent hypergraph mining
problem class CFHM and can be applied to many practical problems. In Section 5,
we will employ this setting to tackle the citation analysis problem sketched in
the introduction.

We start with the definition of the generalization relation used in this section.
Let H1, H2 ∈ H. H1 can be embedded into H2 by subhypergraph isomorphism,
denoted by H1 �i H2, if H2 has a subhypergraph isomorphic to H1. Note that
�i generalizes the notion of subgraph isomorphism between ordinary labeled
graphs to hypergraphs. Since �i is a partial order on H, it is a generalization
relation on every subset of H. Using �i, in this section we consider the

(H,Hc, �i)-Frequent-Hypergraph-Mining

problem of CFHM and will refer to this problem as the frequent subhypergraph
mining problem.

Although the pattern language in the frequent subhypergraph mining prob-
lem is restricted to connected hypergraphs, any enumeration algorithm for this
problem can in fact be used to enumerate frequent, not necessarily connected,
subhypergraphs as well. Indeed, for a set D ⊆ H of hypergraphs, one can consider
the set of connected hypergraphs obtained from D by the following transforma-
tion: Let � ∈ N be a label not used in any of the hypergraphs in D. For every
H ∈ D, introduce a new vertex v, label it by �, and add v to each edge of
H . Clearly, any subhypergraph of the obtained hypergraph is connected and
uniquely represents a (not necessarily connected) subhypergraph of H .
5 Given an unlabeled graph G = (V, E), find a clique of maximum size in G. This

problem is NP-complete [11]. A clique of G is a subset V ′ ⊆ V such that each pair
of vertices in V ′ are joined by and edge in E .
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4.1 Negative Results

In this section we show that the frequent subhypergraph mining problem can-
not be solved in output-polynomial time. This follows directly from Theorem 2
below which states that even for ordinary graphs (i.e., 2-uniform hypergraphs),
the frequent subhypergraph mining problem is intractable in output-polynomial
time. Since this is one of the most frequently considered frequent graph mining
problems, this negative result may be of interest in itself.

Theorem 2. If P �= NP, there is no output-polynomial time algorithm solving
the frequent subhypergraph mining problem even in the case of 2-uniform hyper-
graphs (i.e., ordinary graphs).

Proof. We show that if such an algorithm would exist then the NP-complete
Hamiltonian path problem could be decided in polynomial time. Let G = (V, E)
be an ordinary undirected graph with n vertices. Let HG, H ∈ H2 be labeled
graphs such that

– VHG = V , EHG = E ,
– |VH | = n, and EH consists of n − 1 (hyper)edges that form a simple path

(i.e., each vertex of H occurs exactly once in the path), and
– each vertex in HG and H has the same label.

H will be used to make sure the size of the output is small. One can easily
check that G has a Hamiltonian path if and only if there is a path of length
n− 1 in F = F(H,Hc,�i)({HG, H}, 2). Since |F | ≤ n, this can be decided in time
polynomial in n if F can be enumerated in output-polynomial time. $%

As another restriction, we consider the frequent subhypergraph mining problem
restricted to acyclic hypergraphs [10] because several NP-hard problems on hy-
pergraphs become polynomial for acyclic hypergraphs. A hypergraph H ∈ H
is α-acyclic if one can remove all of its vertices and edges by deleting re-
peatedly either an edge that is empty or is contained by another edge, or a
vertex contained by at most one edge [20]. Note that α-acyclicity is not a
hereditary property, that is, α-acyclic hypergraphs may have subhypergraphs
that are not α-acyclic. Consider for example the hypergraph H ∈ H such that
EH = {{a, b}, {b, c}, {a, c}, {a, b, c}}. While H is α-acyclic, its subhypergraph ob-
tained by removing the edge {a, b, c} is not α-acyclic. To overcome this anomaly,
the following proper subclass of α-acyclic hypergraphs is introduced in [10]: An
α-acyclic hypergraph is β-acyclic, if each of its subhypergraphs is also α-acyclic.
Note that forests are 2-uniform β-acyclic hypergraphs.

Let B3 denote the set of 3-uniform β-acyclic hypergraphs. For connected sub-
hypergraphs of 3-uniform β-acyclic hypergraphs, the following negative result
holds:

Proposition 3. Given a finite set D ⊆ B3 and integer t > 0, deciding whether
H ∈ F(B3,Hc,�i)(D, t) is NP-hard.
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Proof (sketch). We use a polynomial reduction from the subforest isomorphism
problem6. Let F be a forest and T be a tree and consider the hypergraph F ′

(resp. T ′) obtained from F (resp. T ) by introducing a new vertex labeled by a
symbol � ∈ N used neither in F nor in T , and by adding the new vertex to each
edge of F (resp. T ). Clearly, F ′, T ′ ∈ B3 and there is a subgraph isomorphism
from F to T if and only if F ′ �i T ′, from which the statement follows. $%

Proposition 3 above indicates that for the frequent subhypergraph mining prob-
lem, the usual frequent pattern mining approaches (such as the level-wise one)
will not work in incremental polynomial time (unless P = NP ) because they
repeatedly test whether candidate patterns satisfy the frequency threshold (see,
e.g., [12,15]).

4.2 A Näıve Algorithm

Despite the negative worst-case result stated in the previous section, in this
section we present a näıve algorithm for the frequent subhypergraph mining
problem. The algorithm is based on a reduction to mining frequent subgraphs
from labeled bipartite graphs.7

More precisely, for an instance (D, t) of the frequent subhypergraph mining
problem, let n ∈ N be an upper bound on the labels occurring in the hypergraphs
of D and let μ be an injection assigning an integer greater than n to every finite
multiset of N. For a hypergraph H ∈ D, let LB(H) ∈ H2 be the (labeled)
bipartite graph such that

(i) (VLB(H), ELB(H)) is the unlabeled bipartite incidence graph of the unlabeled
hypergraph (VH , EH), and

(ii) for every v ∈ VLB(H) = VH ∪ EH ,

λLB(H)(v) =

{
λH(v) if v ∈ VH

μ(λH(v)) otherwise (i.e., v ∈ EH) .

Clearly, a subgraph G of LB(H) represents a subhypergraph of H if and only
if each vertex of G corresponding to a hyperedge E ∈ EH is connected with
exactly |E| vertices in G. Using the above transformation and considerations,
the set F(H,Hc,�i)(D, t) of t-frequent subhypergraphs for the instance (D, t) can
be computed by Algorithm 1.

Although by Theorem 2, Algorithm 1 does not work in output-polynomial
time in the worst case, using a state-of-the-art frequent graph mining algorithm
it proved to be effective in time on the citation analysis domain (see Section 5).
6 Given a forest F and a tree T , decide whether T has a subgraph isomorphic to F .

This problem is known to be NP-complete [11].
7 Another näıve approach could be the following algorithm: Select a hyperedge E of a

frequent pattern, attach a hyperedge E′ to E, and compute the support count of the
obtained pattern. Beside the intractability of deciding subhypergraph isomorphism,
the number of possible attachments of E′ to E can be exponential in their cardinality.
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Algorithm 1. Frequent Subhypergraph Mining

Require: an instance (D, t) ∈ 2H × N

Ensure: F(H,Hc,�i)(D, t)

1: F := ∅
2: BD := {LB(H) : H ∈ D}
3: Compute a next t-frequent connected bipartite subgraph B of the set BD if it exists;

otherwise return F
4: if B corresponds to some hypergraph HB then

F := F ∪ {HB}
5: goto 3

4.3 Tractable Cases

In this section we present positive results for two special cases of the frequent
subhypergraph mining problem obtained by making assumptions on the labeling
functions of the transaction hypergraphs. We first consider the problem for node
injective hypergraphs, i.e., where the labeling functions are injective. We show
that for this case, the frequent subhypergraph mining problem is polynomially
reducible to the frequent itemset mining problem and hence, it can be solved in
incremental-polynomial time [1]. We then generalize this positive result to edge
injective hypergraphs, i.e., to hypergraphs not containing two different hyper-
edges that are mapped to the same multiset by the labeling function. Although
node injective hypergraphs are a special case of edge injective hypergraphs, we
discuss the two cases separately because node injective hypergraphs can be used
to model many practical problems and they permit a simplified algorithmic
approach.

Node Injective Hypergraphs. As mentioned above, many practical data min-
ing problems can be modeled by node injective hypergraphs, i.e., by hypergraphs
from Hni. Such applications include problem domains consisting of a finite set
of objects (vertices) with a unique identifier. For node injective hypergraphs, we
consider the (Hni,Hni, �i)-Frequent-Hypergraph-Mining problem which is
a special case of the frequent subhypergraph mining problem.

As an example of a practical application of this problem, we consider the
citation analysis task mentioned in the introduction (see also Section 5): Given
a set D of articles and a frequency threshold t > 0, compute each family F of
groups of authors satisfying the following property: there exists a subset D′ ⊆ D
of articles of cardinality at least t such that for every group F ∈ F of authors and
for every article D ∈ D′ it holds that D cites some article written by (exactly)
the authors belonging to F . In this enumeration problem, we can assign a unique
non-negative integer to each author, whose papers are cited by at least one article
in D.

We can use the node injective hypergraph representation of a paper’s bibliog-
raphy defined as follows. For each author cited in the bibliography, introduce a
vertex and label it by the integer assigned to the author. Furthermore, for each



Frequent Hypergraph Mining 253

1. R. Agrawal, R. Srikant. Publication 1.
2. H. Mannila, H. Toivonen. Publication 2.
3. J. Quinlan. Publication 3.
4. H. Toivonen, R. Srikant, R. Agrawal. Publica-

tion 4.

Fig. 1. An example reference-list and the according hypergraph

cited work add a hyperedge E to the set of hyperedges, where E consists of the
vertices representing the cited work’s authors. Clearly, the hypergraph obtained
in this way is always node injective, similar to the example in Figure 1.8 Our
database D is a set of such node injective hypergraphs.

Theorem 4 below states that for node injective hypergraphs, the frequent
subhypergraph mining problem is polynomially reducible to the frequent itemset
mining problem. We recall that the frequent itemset mining problem can be
considered as a problem belonging to the class CFHM (see Section 3). Notice
that in the theorem below, subhypergraphs may be non-connected. The theorem
is based on the fact that for every node injective hypergraphs H1, H2 ∈ Hni,
H1 �i H2 if and only if for every E1 ∈ EH1 , there is a hyperedge E2 ∈ EH2 such
that λH1(E1) = λH2(E2), i.e.,

H1 �i H2 ⇐⇒ {λH1(E) : E ∈ EH1} ⊆ {λH2(E) : E ∈ EH2} .

Note that the above equivalence implies that �i can be decided efficiently for
node injective hypergraphs.

Theorem 4. The frequent subhypergraph mining problem for node injective hy-
pergraphs is polynomially reducible to the frequent itemset mining problem.

Proof (sketch). The proof follows by considering the set of vertex labels of a
hyperedge as an item for every hyperedge occurring in the transaction hyper-
graphs. $%

Combining the above theorem with the results of [1], we have the following result
on listing frequent subhypergraphs for node injective hypergraphs.

Corollary 5. The frequent subhypergraph mining problem for node injective hy-
pergraphs can be solved in incremental polynomial time.

Edge Injective Hypergraphs. In Theorem 6 below we generalize the previous
positive result to edge injective hypergraphs. Since edge injective hypergraphs
may contain different vertices with the same label, they are not determined by
a family of multisets of vertex labels (in contrast to the previous case). Hence, a
polynomial reduction to frequent itemset mining is not applicable to this case.

8 To facilitate better comprehensibility the artificial node connecting all hyperedges
is omitted in this example.
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Algorithm 2. Mining Edge Injective Hypergraphs

Require: an instance (D, t) ∈ 2Hei × N

Ensure: F(Hei,Hei,�i)(D, t)

1: X :=
�

H∈D{λH(E) : E ∈ EH}
2: F := ∅
3: k := 0
4: while k = 0 ∨ Lk �= ∅ do
5: k := k + 1

6: Ck :=

�
X if k = 1

{Y1 ∪ Y2 ∈ [X]k : Y1, Y2 ∈ Lk−1} otherwise

7: Lk := ∅
8: forall X ′ ∈ Ck do
9: Q := ∅

10: forall H ∈ D do
11: if H has a subhypergraph H ′ s.t. X ′ = {λH′

(E) : E ∈ EH′} then
12: if ∃(H ′′, f) ∈ Q s.t. H ′′ � H ′ then
13: change (H ′′, f) in Q to (H ′′, f + 1)
14: else Q := Q ∪ {(H ′, 1)}
15: endfor
16: flag := TRUE
17: forall (H, f) ∈ Q s.t. f ≥ t do
18: F := F ∪ {H}
19: if flag then
20: Lk := Lk ∪ {X ′}
21: flag := FALSE
22: endif
23: endfor
24: endfor
25: endwhile
26: return F

Theorem 6. The frequent subhypergraph mining problem for edge injective hy-
pergraphs can be solved in incremental polynomial time.

Proof (sketch). Due to space limitations, we only sketch the proof. Without
proof we first note that subhypergraph isomorphism between edge injective hy-
pergraphs can be decided in polynomial time. To compute the set of frequent
hypergraphs, we use a level-wise algorithm given in Algorithm 2.

In line 1 of the algorithm, X is initialized as the set of multisets corresponding
to the edges in the transaction hypergraphs. In Ck (line 6), we compute a family
of candidate sets of multisets; the elements of Ck consist of k multisets corre-
sponding to the vertex labels of k hyperedges. For every X’ in Ck (see the loop
starting at line 8), we check for every H ∈ D whether H has a subhypergraph
H ′ such that the set of multisets defined by the vertex labels of the edges of
H ′ is equal to X ′. Since edges are injectively labeled, H ′ must contain exactly
k hyperedges. If H has such a subhypergraph H ′ then we check whether we
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have already found another hypergraph in the database which has a subhyper-
graph isomorphic to H ′. If so, we increment the counter of this subhypergraph
(line 13); otherwise we add H ′ with frequency 1 to the set Q (line 14). In the
loop (17–23) we update the set of frequent hypergraphs and Lk. One can show
that this algorithm works in incremental polynomial time. $%

5 Experimental Evaluation

In this section, we empirically evaluate (i) the näıve algorithm (see Sect. 4.2)
and (ii) the method based on the reduction of the node injective case to fre-
quent itemset mining (see Sect. 4.3) on the citation analysis problem discussed
earlier.

5.1 Bibliographic Datasets

Three different bibliographic data sets were constructed from the ACM Digital
library9: KDD, SIGMOD, and SIGGRAPH. They correspond to the set of all
reference lists of papers found in the proceedings of the respective conferences.
The characteristics of the data-sets are listed in Table 1.

Table 1. Datasets used. We list the total number of papers in the proceedings and the
number of authors occurring in the reference lists of the corresponding papers.

dataset years papers authors

KDD 99-04 499 6966
SIGMOD 74-04 1404 11984

SIGGRAPH 74-04 1519 13192

A simple parser was used to extract the authors and cited papers occurring in
the reference lists. Each paper was then represented as a hypergraph, as already
discussed above. The resulting hypergraphs are node injective and disconnected
in almost all cases. Most existing graph miners only consider connected graphs.
Hence, we added one special hyperedge to each paper, which connects all authors
cited in that paper such that the näıve algorithm could be employed.

All experiments were run on a workstation, running Suse Linux 9.2, 3.2 GHz,
2GB of RAM. As graph miner for the näıve algorithm, we employed Siegfried Ni-
jssen’s implementation of GASTON [18] and as item-set miner for the reduction
method, Bart Goethals’ implementation of Apriori10. Since we did not employ
a specialized hypergraph or graph miner, the data had to be pre- and post-
processed. The pre- and post-processing steps run in time linear in the number
of hypergraphs.
9 http://www.acm.org/

10 http://www.cs.helsinki.fi/u/goethals/software/
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5.2 Experimental Results

As mentioned above, we performed experiments employing reductions to fre-
quent bipartite graph mining and to frequent item-set mining. The empirical
results are given in Figures 2 and 3.

The runtime of the method based on the reduction to frequent item-set mining
was always below 0.01 seconds. Different from that, the näıve approach based
on the reduction to frequent bipartite graph mining shows much higher run-
times. In detail, the 1% settings required 20.36, 4.55, and 0.4 seconds for KDD,
SIGMOD, and SIGGRAPH respectively. The higher runtimes for the näıve
approach are essentially due to the problem that only a fraction of the frequent
bipartite graphs are in fact subhypergraphs (see line 4 of Algorithm 1). As usual
for frequent pattern mining techniques, the runtime and size of the frequent pat-
tern space increase exponentially with a decreasing level of minimum support
(see Figures 2 and 3). One of the frequent subhypergraphs in the KDD dataset
was {{Agrawal, Srikant}, {Agrawal, Swami, Imielinski}}, while in the SIG-

GRAPH dataset the hypergraph {{Sproull, Newmann}} was very frequent.
The experimental results reveal that the reduction approach can be successfully
employed in practice. As expected due to the theoretical results, the reduction
to item-set mining for injective subhypergraphs is much less computationally
expensive. All experiments w.r.t. node injective subhypergraphs were finished in
less than a fraction of a second, which – in our opinion – indicates that it is not
worth-while to implement a special purpose data mining system for this task.

6 Conclusion and Further Research

In this paper the problem class CFHM of frequent hypergraph mining was intro-
duced. It forms a natural extension of traditional frequent itemset and graph
mining. Several problems of CFHM were studied and positive and negative com-
plexity results were obtained.

In our first step of studying some problems of CFHM we deliberately did not
develop and implement a special hypergraph mining algorithm, because there
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are many problems of CFHM that are interesting (which implies the need for im-
plementing many variants and optimizations). Instead, some of our theoretical
and practical results have been obtained by reductions to frequent graph mining
and itemset mining problems. The experiments clearly indicate that – at least for
the citation analysis problems studied – these reductions can be quite effective
in practice. In addition, these experiments provide evidence that frequent hy-
pergraph mining is indeed a useful generalization of frequent itemset and graph
mining and is likely to yield many interesting applications.

Finally we list some open questions.

(i) One of the challenges is to identify further problems of CFHM that are enu-
merable in incremental or at least in output-polynomial time.

(ii) Besides subhypergraph isomorphism, it would be interesting to investigate
frequent hypergraph mining problems, where the generalization relation is
defined by (constrained) homomorphisms.

(iii) Since many problems of CFHM can be reduced to frequent graph mining in
bipartite graphs, it would be interesting to develop frequent graph mining
algorithms specific to bipartite graphs.

(iv) The work on frequent hypergraph mining can be related to multi-relational
data mining [7], where each instance consists of multiple tuples over multiple
tables in a relational database. Multi-relational data mining techniques have
been applied to graph mining problems. Hence, the question arises if they
are also applicable to hypergraph mining, and vice versa.

(v) In a similar way that frequent hypergraph mining generalizes frequent graph
mining in undirected graphs, frequent pattern mining in relational structures
(see, e.g., [8]) can be considered as a generalization of frequent graph min-
ing in directed graphs. Similarly to the problem class CFHM, the Frequent
Relational Structure Mining Problem Class (CFRSM) can be defined as the
set of (LD,LP , �)-Frequent-Pattern-Mining problems, where LD and
LP are classes of relational τ -structures over some vocabulary τ . Thus, the
(LD,LP , �)-Frequent-Relational-Structure-Mining problem can be
defined as follows: Given a finite set D ⊆ LD of relational τ -structures and
an integer t > 0, compute the set of relational τ -structures from LP that
generalize at least t structures of D with respect to �. To the best of our
knowledge, there are only a few results towards this direction. In particular,
related problems have been considered only for the generalization relations
relational homomorphism [5] and relational substructure isomorphism [17].
The challenge is to identify tractable problems of CFRSM.
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Abstract. The new direction of the research in the field of data mining is the 
development of methods to handle imperfection (uncertainty, vagueness, im-
precision, …). The main interest in this research is focused on probability mod-
els. Besides these there is an extensive study of the phenomena of imperfection 
in fuzzy logic. In this paper we concentrate especially on fuzzy logic programs 
(FLP) and Generalized Annotated Programs (GAP). The lack of the present re-
search in the field of fuzzy inductive logic programming (FILP) is that every 
approach has its own formulation of the proof-theoretic part (often dealing with 
linguistic hedges) and lack sound and compete formulation of semantics. Our 
aim in this paper is to propose a formal model of FILP and induction of GAP 
programs (IGAP) based on sound and complete model of FLP (without linguis-
tic hedges) and its equivalence with GAP. We focus on learning from entail-
ment setting in this paper. We describe our approach to IGAP and show its  
consistency and equivalence to FILP. Our inductive method is used for detec-
tion of user preferences in a web search application. Finally, we compare our 
approach to several fuzzy ILP approaches.  

1   Introduction 

In a standard logical framework, we are restricted to represent only facts that are true 
absolutely. Thus, this framework is unable to represent and reason with imperfect - 
uncertain, vague, noisy, ranked/preferenced - information. This is a significant gap in 
the expressive power of the framework, and a major barrier to its use in many  
real-world applications. We use imperfection in the generic sense of uncertainty. 
Imperfection is unavoidable in the real world: our information (and particularly our 
classification) is often inaccurate and always incomplete, and only a few of the "rules" 
that we use for reasoning are true in all (or even most) of the possible cases. 

Furthermore, it is hard to represent the notions of a natural language just with two 
values (true, false). If we consider the concept “cheap”, in a standard two-valued logic 
we can say that it holds (an object is cheap) or not (an object is not cheap). But in two 
valued logic we cannot express easily that one item is cheaper than another. So, it is 
convenient to use several degrees of truth to the facts, in order to represent the “more” 
or “less” cheap. For these purpose we can use the multi-valued logical framework, in 
which a truth value is assigned to facts, information expressing their accuracy, trust-
worthiness, preference, especially different user preferences, etc. 
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This limitation, which is critical in many domains (e.g., medical diagnosis), has led 
over the last decade to the resurgence of probabilistic reasoning in data mining. Prob-
ability theory models uncertainty by assigning a probability to each of the states of the 
world that an agent considers possible (see [7]). Besides probabilistic models there is 
an extensive study of these phenomena in many valued logic.  

To capture different independencies between predicates, in many valued logical 
framework we have several many valued connectives, which from each one are con-
venient for another, specific case. Notice, the standard logical framework deals only 
with “strict” but “uncomplicated” two-valued connectives (&, ∨, →) for each case. 

In this paper we concentrate on multi valued logical framework, especially on fuzzy 
logic programming (FLP) and generalized annotated logic programming (GAP). There 
are no research – as we know – on induction of GAP programs (IGAP), and just a few 
studies on fuzzy inductive logic programming (FILP). The lack of the present research 
on FILP is that every approach has its own formulation of the deductive part. These 
differs each other and are considered mainly from the proof-theoretic view. The model-
theoretic part of these approaches lacks correct and sound formulation. 

In [12] we proposed an approach to induction of FLP via inducing Generalized 
Annotated Programs (GAP) [14]. The formal model of FILP was not introduced in the 
mentioned paper (or any paper before), as well as the consistency of our approach was 
never proved before. The main contributions of this paper are to give a correct and 
sound formal model of FILP and IGAP for learning from entailment setting, to show 
the correctness of our approach and to determine the main challenges and problems in 
the process of induction in fuzzy logic framework.  

This paper is structured as follows: In the next chapter we introduce our formal 
model of FLP from the proof-theoretic and model-theoretic view. We follow closely 
Lloyd’s presentation and even notation [16]. We show the correctness and complete-
ness of this model, too. Based on this model, we propose our model of FILP in the 
following chapter and show that our model of FILP is a generalization of crisp ILP. In 
the next two chapters we describe the formal model of GAP and IGAP. We show in 
the latter chapter that our IGAP task is equivalent to FILP task. In this chapter we 
further describe our IGAP approach (with an illustrative toy example) and show its 
consistency. In the chapter 6 we discuss the role of our approach in the Slovak project 
NAZOU [19]. Finally, we discuss some recent work and future directions. 

2   Fuzzy Logic Programming 

In order to describe different interrelations between properties, our language has 
finitely many conjunctions &1, …, &k, disjunctions ∨1, …, ∨l and their truth functions 
conjunctors &1

•, …, &k
•, disjunctions ∨1

•, …, ∨l
• (coupled with conjunctors via de 

Morgan laws with respect to the negation 1-x). In order to describe the increasing 
fulfillment of requirements we have aggregation operators of different arity @1, …, 
@m in our language. Their truth functions @1

•, …, @m
• are order preserving. Usually 

we assume that @•(0,…,0)=0 and @•(1,…,1)=1 hold, but sometimes we relax these. 
We assume all truth functions of conjunctions, disjunctions and aggregations are left 
continuous (in the sense of functions of real numbers). Implications →1, …, →n have 
truth functions implicators →1

•, …, →n
•. 
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Example 1. Let x the truth value of an event X and y the truth value of an event Y.  
The common connectives are the Lukasiewicz connectives  

&L
•(x,y) = max(0, x+y-1) 

∨L
•(x,y) = min(1, x+y) 

→L
•(x,y) = min(1, 1-x+y) 

(in case if X and Y are disjunctive) 
the Goedel connectives 

&G
•(x,y) = min(x,y) 

∨G
•(x,y) = max(x,y) 

→G
•(x,y) = y if x > y, else 1 

(in case if X and Y are inclusive) and 
the product connectives 

&P
•(x,y) = x.y 

∨P
•(x,y) = x+y-xy 

→P
•(x,y) = min(1, y/x) 

(in case if X and Y are independent). 

In our computational model, we have conjunctors C1,...,Cn which are residual to im-
plicators I1, …, In. Assume, our conjunctors and implicators fulfill property (a) from 
(1) (in what follows, b, h, r are universally quantified and range through [0,1]). 

(a)(C,I) r ≤ I(b,h) iff C(b,r) ≤ h 
φ2(C,I) C(b,I(b,h)) ≤ h 
φ3(C,I) r ≤ I(b, C(b,r)) 

(1) 

The following observations hold: 

- (a)(C,I) iff (φ2(C,I) and φ3(C,I)) 
- if (a)(C,I) then I(b,h) = sup{r: C(b,r) ≤ h} and C(b,r) = inf{h: I(b,h) ≥ r}. 
- given C, then there is an I such that (a)(C,I) iff C is left continuous in r. 
- given I, then there is a C such that (a)(C,I) iff I is right continuous in h. 

Any formula built from atoms using conjunctions, disjunctions and aggregations is 
called a body. Every composition of conjunctors, disjunctors and aggregation opera-
tors is again an aggregation operator. Hence, without a loss of generality, we can 
assume that each body is of the form B=@(B1,... ,Bn).  

A rule of FLP is a graded implication  

(H←(B1,...,Bn).r), 

where H is an atom called head, @(B1,...,Bn) is a body and r∈Q∩[0,1] is a rational 
number. (H ← @((B1,...,Bn)) is the logical and r is the quantitative part of the rule).  

A fact is a graded atom (B.b).  
A finite set P of positively graded FLP rules and facts is said to be a fuzzy logic 

program if there are no two rules (facts) with the same logical parts and different 
quantitative parts. It can be represented as a partial mapping P: Formulas→(0,1] with 
the domain of P dom(P) consisting only of atoms and logical parts of FLP rules of the 
form H←@(B1,...,Bn). The quantitative part of the rule is r=P(H← @((B1,...,Bn)).  

 
 



 Induction of Fuzzy and Annotated Logic Programs 263 

Example 2. An example of a fuzzy logic program 
p(a,b).3/4 p(b,c).1/4 p(a,d).2/3 p(d,c).1/3 
(p(X,Z) ←G p(X,Y) &P p(Y,Z)).1/4 

Let BL be the Herbrand base. A mapping f: BL →[0,1] is said to be a fuzzy Herbrand 
interpretation. Our fuzzy logic is truth functional i.e. f can be extended to f all formu-
las along the complexity of formula using the truth function of connectives. A graded 
formula (ϕ.x) is true in an interpretation f (f |=FLP ϕ.x) if f(ϕ)≥x. For a rule (←•, @• are 
truth functions of ←, @) it means (2):  

f (H←@((B1,...,Bn))=←•(f(H),@• (f(B1),...,f(Bn))) ≥ r (2) 

A pair (x;θ) consisting of a real number 0<x≤1 and a substitution θ is a correct an-
swer for a program P and a query “?-A” if for arbitrary interpretation f, which is a 
model of P, we have f(∀(Aθ))≥x. 

We base our procedural semantics on the backward usage of fuzzy modus ponens 
(3) – no refutation nor resolution is applied here (we know by the residuality of Ci that 
this is a sound rule[21]). 

{(B. b), (H ←I B. r)}  |=FLP (H. Ci(b,r)) (3) 

In the computation we deal with four types of inference rules: 

Rule 1: from ((XAmY);υ) infer ((XC(B,r)Y)θ;υ°θ) if 
- Am is an atom (called the selected atom) 
- θ is an mgu of Am and H, 
- P(H←B)=r and B is a (nonempty) body. 

C means a residual conjunction (see fuzzy modus ponens). 

Rule 2: From (XAmY) infer (X0Y) if in an aggregation an argument is missing. 

Rule 3: From ((XAmY);υ) infer ((XrY)θ;υ°θ) if 

- Am is an atom (called the selected atom) 
- θ is an mgu of Am and A, 
- P(A)=r (i.e. A is a fact). 

Rule 4: If the word does not contain any predicate symbols rewrite all connectives 
(&’s, ∨’s and @’s) to &•, ∨• and @•. As this word contains only some additional C’s 
and real numbers, evaluate it (of course the substitution remains untouched). 

A pair (r;θ) consisting of a (rational) number r and a substitution θ is said to be a 
computed answer for a program P and a goal “?-A” if there is a sequence G0, …, Gn 
such that 

- every Gi is a pair consisting of a word and a substitution, 
- G0=(A,id) 
- every Gi+1 is inferred from Gi by one of the inference rules (we do not forget the 
usual Prolog renaming of variables along derivation), 
- Gn=(r,θ’) and θ=θ’ restricted to variables of A. 

TP(f)(A) = max{sup{Ci(f(B),r): (A←i B. r) is a ground instance of a rule in the 
program P}, sup{b: (A. b) is a ground instance of a fact in the program P}}. 

(4) 
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We know that TP operator (4) is continuous [21] and it's fixpoint is the minimal 
fuzzy model of the fuzzy logic program P.  

Example 3. We find the minimal model of program from the example 2: 

TP
0(0) =  ∅ 

TP
1(0) = TP(TP(0)) = {p(a,b).3/4, p(b,c).1/4, p(a,d).2/3, p(d,c).1/3 } 

TP
2(0) = TP(TP(TP(0))) = {p(a,b).3/4, p(b,c).1/4, p(a,d).2/3, p(d,c).1/3, p(a,c).2/9 } 

TP
3(0) = TP

2(0), so TP
2(0) is the minimal model of P 

The truth value of the fact p(a,c) in the minimal model is computed as follows: 

TP(0)(p(a,c))=max{sup{&G(TP
1(p(a,b)&Pp(b,c)),1/4), &G(TP

1(p(a,d)&Pp(d,c)),1/4)},0} 
=max{sup{&G(&P(3/4,1/4),1/4),&G(&P(2/3,1/3),1/4) },0}= 
=max{sup{&G(3/4.1/4,1/4),&G(&P(2/3.1/3,1/4)},0}= 
=max{sup{min{3/16,1/4},min{2/9,1/4 }},0}=max{sup{3/16,2/9},0}=2/9. 

From this computation we can see the inference rules and the many valued modus 
ponens. We show an example of a computation: 

?-p(a,c).    // substitution {X/a, Y/b, Z/c} 
?-&G((p(a,b)&Pp(b,c)),1/4). // &G is residual to →G 
?-&G(&P(3/4,1/4),1/4).  // =min{3/4.1/4, 1/4}=3/16 
?-3/16.    // the answer is 3/16 
?-&G((p(a,d)&Pp(d,c)),1/4). // substitution {X/a, Y/d, Z/c} 
?-&G(&P(2/3,1/3),1/4).  // &G is residual to →G 
?-2/9.    // the answer is 2/9  

Notice, that in classical logic programming (if we do not consider truth values, resp. 
every truth value is 1.0 in example 2) the answer to goal “?-p(a,c).” would be “yes”. 

Theorem 1 (soundness of our formal model of FLP [21]). Every computed answer 
for a definite fuzzy logic program P and a goal “?-A” is a correct answer. 

Theorem 2 ((approximate) completeness of our formal model of FLP [21]). For 
every correct answer (x;θ) for a definite fuzzy logic program P and a query “?-A” and 
for every ε>0 there is a computed answer (r;υ) for P and “?-A” such that x-ε<r and 
θ=υγ (for some γ). 

3   Fuzzy Inductive Logic Programming 

The most important requirement to FILP is that its formal model must be a generali-
zation of the classical ones (as every many valued logic is a generalization of the 
classical one).  

Briefly, the task of ILP is to find a correct hypothesis from the sets of positive and 
negative examples under the presence of background knowledge. We distinguish 
three settings in Inductive Logic Programming (ILP), namely learning from entail-
ment [6], learning from interpretations [2], and learning from proofs [5]. As we stated 
in the introductory part, we concentrate on learning from entailment setting in this 
paper:  
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Definition 1 (the learning from entailment setting of the ILP task). When learning 
from entailment, given is a set of examples E = P ∪ N, consisting of positive P and 
negative N examples. Given is the background knowledge B. The task is to find a 
hypothesis H, such that the following conditions hold:  

(∀e∈P) H∧B |= e (crisp-completeness of H) 
(∀e∈N) H∧B |≠ e (crisp-consistency of H) 

E consists of facts, B is a definite program, H consists of definite program clauses. 
The conditions of completeness and consistency mean that we want all positive ex-
amples to belong to the minimal model of H∧B and none of the negative examples 
belong to the minimal model of H∧B. 

In previous chapter we introduced the concepts necessary to formulate the FILP task 
(i.e. fuzzy Herbrand interpretation, fuzzy definite clause, fuzzy model, …). These 
allows us to define the FILP task taking into account that it have to be a generaliza-
tion of the classical ILP task. 

We face a problem. A straightforward rewriting of classical ILP definition does not 
make sense because we have no clear positive and negative examples. From the se-
mantics of truth values (see previous chapter) it is clear, that e:α∈E holds in all  
degrees α’≤α and does not holds in all degrees α’’>α. Thus the conditions of com-
pleteness and consistency will be different from the classical ones. 

Definition 2 (the learning from entailment setting of the FILP task). When learn-
ing from fuzzy entailment, given is a set of fuzzy examples E. Given is the fuzzy 
background knowledge B. The task is to find a fuzzy hypothesis H, such that the  
following conditions hold: 

(∀e.α∈E) H∧B |=FLP e.α (fuzzy-completeness of H) 
(∀e.α∈E) (∀β>α) H∧B |≠ FLP e.β (fuzzy-consistency of H) 

E consists of fuzzy facts, B is a fuzzy definite program and H consists of fuzzy defi-
nite clauses. Nevertheless, these definitions seems to be very similar but they are still 
very different. First, the fuzzy meaning of a model, entailment, fact, definite program 
and definite clause differ from the classical meaning of these concepts. Second, in the 
FILP task we do not have only positive and negative examples. Indeed we have ex-
amples with truth values belonging to the interval [0,1]. However, the FILP task  
differs more from the classical ones it still remains it’s generalization. 

Observation 1. Our formal model of the FILP task (definition 2) is a generalization 
of the classical, crisp ILP task (definition 1). 

Proof: Reduce the fuzzy truth value interval ftv=[0,1] (or ftv=[0,1]∩Q) to crisp truth 
value interval ctv={0,1}. As can be seen from our formal model of FLP (in the previ-
ous chapter), in this case fuzzy facts becomes crisp. In case of ctv the “fuzzy” exam-
ples e.0 and e.1 correspond to crisp negative and positive examples, respectively.  

Similarly, for ctv the truth values of fuzzy conjunctions will correspond to truth 
values of crisp conjunctions (because the fuzzy conjunctions are the generalizations of 
the classical ones). Thus the fuzzy definite clauses and fuzzy definite programs will 
be equivalent to crisp definite clauses and crisp definite programs, respectively. 
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Now, we prove for ctv, that if the “fuzzy” hypothesis (respectively, its reduced 
crisp form) is fuzzy-complete, it is crisp-complete, too. The fuzzy-completeness con-
dition (∀e.α∈E) H∧B |=FLP e.α holds, if (H∧B)(e)≥α for every e.α∈E. If α=1 then 
(H∧B)(e)≥α=1. Thus (H∧B)(e)≥1 and since every truth value can be 0 or 1, 
(H∧B)(e)=1 what means that all “positive” examples (e.α=e.1) are entailed by H∧B. 

Similarly, for ctv, if the “fuzzy” hypothesis (its reduced crisp form) is fuzzy-
consistent, it is crisp-consistent, too. The fuzzy-consistency condition (∀e.α∈E) 
(∀β>α) H∧B |≠ FLP e.β holds, if (H∧B)(e)<β for every e.α∈E and β>α. If α=0 then 
β=1. Thus (H∧B)(e)<β=1, so (H∧B)(e)<1. Since every truth value can be 0 or 1, 
(H∧B)(e)=0 what means, that e does not belong to minimal model of H∧B. It means, 
that none of the “negative” examples (e.α=e.0) are entailed by H∧B.          � 

As we see from the example 3, the deductive part of FLP is computationally not diffi-
cult. That is mainly, because we know all truth functions of connectives and aggrega-
tions. In the inductive part it is the opposite. In the beginning of induction we have 
just the known connectives or aggregations. But these need not to fit the data we are 
learning from. There can be (infinitely) many unknown types of connectives and 
aggregations (and thus hypotheses) our data correspond to. 

There can be several approaches to solve the FILP task. For example, we can use 
just the known connectives, aggregations, and try to find some hypotheses. Another 
approach can be the genetic algorithms, where we can find some previously unknown 
connectives, aggregations in rules. We can construct several approaches by this way. 
All these approaches need to implement an own deductive part, because the inference 
is different from the classical Prolog inference (even though the fuzzy inference rules 
are the generalization of the Prolog inference rules). 

There is an interesting approach to FILP task, namely to induce Generalized Anno-
tated Programs (GAP) [14]. The advantage of this approach is that GAP deals with 
crisp connectives and they are “equivalent” to FLP [15], i.e. GAP can be transformed 
to FLP and FLP can be transformed to GAP. Notice that GAP differs from Logic 
Programs with Annotated Disjunctions [3], known in the ILP community. 

Since our approach to FILP task is based on induction of GAP, we introduce GAP 
in the next chapter. So far we do not know about any inductive GAP system (also 
personally confirmed by V.S. Subrahmanian [14]). 

4   Generalized Annotated Programs 

In [14] the generalized annotated logic programs (GAP) that unify and generalize 
various results and treatments of multivalued logic programming are introduced.  

In multivalued logic, the set of truth values represents our set of preferences, the 
degree of trustworthiness of data, or the relevancy of information. The whole theory 
of GAP is developed in a general setting for truth value set being lattices. We restrict 
here ourselves to finite subsets of the unit interval of real numbers [0,1].  

The language of annotated programs consists of qualitative and quantitative parts. 
The qualitative part is the usual language of predicate logic (with variables, constants,  
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predicates and function symbols). The quantitative part of the language in our ap-
proach is typed (sorted) and for each logical predicate p there is a (possibly different) 
truth values set TP with ordering ≤P. The quantitative part of the language consists of 
annotation terms. These are composed from annotation variables, annotation constants 
and a set of basic annotation functions of different arity. Every basic annotation term 
(considered as a symbol of our alphabet) is assigned an annotation function. In [14] it 
is assumed that every annotation function is total continuous (hence monotonic) in the 
sense of lattice theory. This lattice continuity means that all annotation functions are 
non-decreasing and left continuous in the topology of real line. More complex annota-
tion terms are built from these annotation functions preserving arity. 

If A is an atomic formula and α is an annotation term, then A:α is an annotated 
atom. If α∈[0, 1] then A:α_is constant-annotated (or c-annotated). When α is an 
annotation variable, then A:α_is said to be variable-annotated (or v-annotated). 

If A:ρ is a possibly complex annotated atom and B1:µ1, ..., Bk:µk are variable-
annotated atoms, then A:ρ(µ1, …, µk) ← B1:µ1 & ... & Bk:µk is an annotated clause.  

We stress here, that atoms in the body of a rule have only variable annotations (to 
avoid problems with discontinuous restricted semantics). Only facts can have constant 
annotations. We assume that variables occurring in the annotation of the head also 
appear as annotations of the body literals and different literals in the body are anno-
tated with different variables. All object and annotation variables are assumed to be 
generally quantified. 

Let BL be the Herbrand base of the qualitative part of the GAP language. A map-
ping f: BL → [0,1] is said to be a Herbrand interpretation for annotated logic. 

The satisfaction is defined along the complexity of formulas as in the classical 
logic. 

Suppose f: BL → [0,1] is an interpretation, µ∈[0,1] and A is ground atom, then 
f|=GAP A:μ, i.e.  f is a model of A:μ iff f(A) ≥ μ. The rest of satisfaction is defined 
similarly as in the two valued logic: 

f |=GAP F1&F2 iff f is a model of F1 and f is a model of F2. 
f |=GAP F1∨F2 iff f is a model of F1 or f is a model of F2. 
f |=GAP F1←F2 iff f is a model of F1 or f is not a model of F2. 

Quantification of object or annotated variables is defined as usual by substitution 
of ground terms (object or annotation). 

Example 4. In the case of propositional logic the Herbrand base is represented by the 
set of propositional variables PV. Assume, we have an annotated clause 

C= p:(1+2x)/4 ← p:x and an interpretation f: PV → [0, 1].  

Then f |=GAP C iff for every x from the unit interval [0, 1], f(p)≥x implies 
f(p)≥(1+2x)/4. It is fulfilled, if f(p)≥1/2. 

Example 5. Constantly annotated clauses are important for applications, because they 
can describe dependencies observed in data. Assume we have an annotated clause 
D= q:0.5 ← p:0.5 and an interpretation f: PV → [0, 1].  
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Then f |=GAP D if either f(p)<0.5 or f(q)≥0.5. This rule with constant annotation il-
lustrates also discontinuity of restricted semantics, because in every model f(q) ≥0.5 
but no finite computation can confirm this. 

In other words, we can say, that the annotated rule is true in the interpretation f 

f |=GAP A:ρ (µ1, …, µk) ← B1:µ1 & ... & Bk:µk 
if for all assignments e of annotation variables we have 
f(A) ≥A ρ(e(µ1), …, e(µk)) ← f(B1) ≥B1 e(µ1) & … &   f(Bk) ≥Bk e(µk) 

(5) 

Definition 3 (FLP and GAP transformations [15]). Assume C= A:ρ ← B1:μ1 &… 
...& Bk:μk is an annotated clause. Then flp(C) is the fuzzy rule A← ρ(B1,...,Bk).1, here 
ρ is understood as an n-ary aggregator operator.  

Assume D = A←i @(B1,...,Bn).r is a fuzzy logic program rule. Then gap(D) is the 
annotated clause A:Ci(@(x1,...,xn),r) ← B1:x1,...,Bn:xn. 

The definition 3 enable to us to transform FLP programs to GAP programs and vice 
versa. Note, that this transformation is on the syntactical level. The next theorem 3 
claims the equivalence of FLP and GAP on the syntactical level. 

Theorem 3 (FLP and GAP equivalence [15]). ssume C is an annotated clause, D is a 
fuzzy logic program rule and F is a fuzzy Herbrand interpretation. Then  

f is a model of C iff f is a model of flp(C),  
f is a model of D iff f is a model of gap(C). 

5   Inductive Generalized Annotated Programming 

Because of definition 3 and theorem 3 we can construct an alternative approach to our 
FILP task. By this idea we transform the FILP task to Inductive Generalized Anno-
tated Programming (IGAP) task. We find an IGAP hypothesis (GAP program) what 
we again transform to FILP hypothesis (FLP program). 

Definition 4 (the learning from entailment setting of the IGAP task). When learn-
ing from GAP entailment, given is a set of GAP examples E. Given is the GAP back-
ground knowledge B. The task is to find a GAP hypothesis H, such that the following 
conditions hold: 

(∀e.α∈E) H∧B |=GAP e.α (gap-completeness of H) 
(∀e.α∈E) (∀β>α) H∧B |≠ GAP e.β (gap-consistency of H) 

Observation 2. The FILP task can be transformed to IGAP task and the IGAP task 
can be transformed to FILP task. 

Proof: Arising from equivalence of FLP and GAP (definition 3 and theorem 3).        � 

In [12] we have introduced our approach to IGAP task, although the above formal 
model (definition 4) was not determined yet. 
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Our approach to IGAP is based on multiple use of a classical ILP system with 
monotonicity axioms in the background knowledge (illustrated in algorithm 1). 

Algorithm 1. Our IGAP approach 

Input: Annotated E, Annotated B. 
Output: Annotated H. 

1. Initialize the two-valued hypothesis H*=∅. 
2. Find out every n classes of truth values which are present in E (TV1< … < TVn). 
3. Find out every m1, …, mk classes of truth values which are present in B for every 

predicate p1, …, pk (TVp1,1 < … < TVp1,m1, …, TVpk,1 < ... < TVpk,mk). 
4. Transform the annotated background knowledge B to a two-valued background 

knowledge B* by an extra attribute TV (pi(x1, …, xis):TVpi,j⇒pi(x1, …, xis, TVpi,j)). 
5. Add monotonicity axioms to B* for every annotated predicate pi, i∈{1, …, k} 
        ( pi(x1, …, xis, X) ← le(X, Y), pi(x1, …, xis, Y).,  
          le(TVpi,1, TVpi,2)., …, le(TVpi,mi-1, TVpi,mi). ) 
6. For all TVi, where 1<i≤n do the following: 

a. split the example set E to negative E-={e:α∈E|α<TVi} and positive 
E+={e:α∈E|α≥TVi} parts.  

b. With the ILP system ALEPH compute the hypothesis Hi* for the two-
valued background knowledge B, positive E+, and negative E- examples.  

c. Add the hypothesis Hi
* to H*. 

7. Transform two-valued hypothesis H* to annotated hypothesis H by transforming the 
extra attributes TV in literals back (pi(x1, …, xis, TVpi,j)⇒pi(x1, …, xis):TVpi,j). 

Informally, we search every present truth values of examples and background 
knowledge predicates. Then we transform predicates in B to crisp form, thus achiev-
ing crisp background knowledge B*. Then we extend B* with the “monotonicity axi-
oms” which states that if the predicate holds with truth Y it also holds in truth X less 
or equal to Y. Predicates “le” states the relation less or equal. This correspond to natu-
ral meaning of truth values to B*. Then we split the example set to positive and nega-
tive parts according to truth values present in E as follows: learning rules that guaran-
tee our annotation function has value at least α, every example higher or equal than α 
belongs to positive example set, the others create the negative example set (note that 
when learning witness for  α in B* all truth values take part). Thus, the hypothesis for 
the grade α holds in grade “at least” α, what agree with the natural meaning of truth 
in GAP. 

Example 6. The background knowledge consist of crisp facts of “hotel(hotel_name, 
location, price)”, “conference(name, location)” and annotated facts of “cheap(price)”, 
“near(location1, location2)”: 

hotel(africa,centre,20).   hotel(america,east,50).  hotel(antarctica,west,80).  
hotel(australia,east,110).  hotel(asia,west,50).  hotel(europe,centre,80). 
conference(icml,centre). conference(ecml,east). conference(ilp,west). 
cheap(20):1.0 cheap(50):0.7 cheap(80):0.4 cheap(110):0.1 
near(centre,centre):1.0 near(east,centre):0.7 near(west,centre):0.4 
near(centre,east):0.7 near(east,east):1.0 near(west,east):0.1 
near(centre,west):0.4 near(east,west):0.1 near(west,west):1.0 
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The example set consist of annotated facts of “good(hotel,conference_for)”: 

good (africa,icml):1.0 good(america,icml):1.0 good(antarctica,icml):0.4 
good(australia,icml):0.1 good(asia,icml):0.7 good(europe,icml):0.4 
good(africa,ecml):1.0 good(america,ecml):1.0 good(antarctica,ecml):0.1 
good(australia,ecml):0.1 good(asia,ecml):0.1 good(europe,ecml):0.4 
good(africa,ilp):0.7 good(america,ilp):0.1 good(antarctica,ilp):0.4 
good(australia,ilp):0.1 good(asia,ilp):1.0  good(europe,ilp):0.4 

The annotated hypothesis (result of our approach) is the following: 

good(A,B):1.0 :- hotel(A,C,D), cheap(D):0.7, conference(B,C). 
good(A,B):1.0 :- hotel(A,C,D), cheap(D):0.7, conference(B,E), near(E,C):0.7. 
good(A,B):0.7 :- hotel(A,C,D), cheap(D):0.7, conference(B,E), near(E,C):0.4. 
good(A,B):0.4 :- hotel(A,C,D), cheap(D):0.4, conference(B,E), near(E,C):0.4. 

All these rules cover all positive examples (in relevant truth). The  meaning of 
these rules (for example for the third rule) is “if a hotel is cheap with truth (at least) 
0.7 and near to conference location with truth (at least) 0.4 then this hotel is good for 
the conference with truth (at least) 0.7”. 

Our illustrative example 6 is very simple but convenient for demonstration. As we 
see, we deal with mixed (crisp and annotated) predicates. However, in case of our 
example the completeness and consistency conditions are fulfilled. In general, it often 
happens that the completeness condition do not hold. But the consistency condition is 
always fulfilled (proved in theorem 4). 

Theorem 4. Given annotated B and annotated E. Our algorithm 1 finds a gap-
consistent annotated hypothesis H. 

Proof: The gap-consistency condition requires that for every e:α∈E the following 
holds (∀β>α) H∧B |≠ GAP e:β, so the minimal model MH∧B of H∧B can not assign a 
truth value β (higher than α) to example e:α. By contradiction, assume that our 
algorithm assigns a truth value β  higher than α to an example e:α. From the con-
struction of positive and negative example sets in our algorithm, and from the con-
sistency of ALEPH (the hypothesis can not cover negative examples) it is clear that 
an example e:α can be covered only with a hypothesis of the truth value δ≤α. So, it 
is not possible that minimal model MH∧B assigns truth value β to the example e:α. It 
is a contradiction.                                                       � 

Notice, that it can happen, that we do not cover an example e:α right in the grade α, 
but in grade δ<α. So, that means, that our algorithm can find hypotheses that are not 
complete.  

Observation 3. Given fuzzy B and fuzzy E. Let us transform the fuzzy E and fuzzy B 
to annotated EA and annotated BA, compute with our algorithm 1 an annotated hy-
pothesis HA and transform this HA to fuzzy H. Then this fuzzy H is fuzzy-consistent. 
Proof: Arising from observation 2.              � 

Observation 4. Given an annotated B and annotated E. Our algorithm 1 finds an 
annotated H such that 

E |=GAP H∧B 
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Proof: This relation means, that E assigns a truth value higher than H∧B to an exam-
ple e:α (E(e)≥H∧B(e)). From our algorithm and the theorem 4 it is clear, that an ex-
ample e:α is covered with a hypothesis of the truth value δ≤α.            � 

Our approach (algorithm 1) is implemented in the Slovak project “NAZOU – Tools 
for acquisition, organization and maintenance of knowledge in an environment of 
heterogeneous information resources” [19]. Our method in this project is used to learn 
the user’s preferences [9]. To explain the idea imagine a situation from example 6. 
Say, that the user wants to find a hotel in a selected city with a few hundreds of ho-
tels. We want to serve to the user the preferable hotels first. We do it as follows: The 
objects are given to the user without any knowledge about him/her preferences. 
He/she evaluates a couple of hotels in several classes – e.g. poor (0.1), good (0.7) and 
excellent (1.0) – and restarts the search. Then – by our approach – the user’s classifi-
cation is learned and the hotels are given to him/her according to his/her preferences. 
The process is repeated until the convenient hotels are founded. 

Our approach was successfully applied to measuring impact of information sys-
tems on business competitiveness [10] and to classify cars according to their fuel 
consumption for the well known auto-mpg database from the UCI repository [11]. In 
all of these applications, our approach was used for ordinal (monotone) classification.  
Since, our aim in this paper is to give a formal model for FILP (and not to introduce 
our approach), we omit the descriptions of these experiments. We introduced the 
formal model of IGAP because it seems to be an interesting approach to FILP. 

6   Fuzzy Data vs. Crisp Data 

As mentioned before, our approach is used to learn user preferences [9] in the 
NAZOU project [19]. If we talk about user’s preferences, an interesting phenomenon 
arises: The crisp data becomes fuzzy in the moment, if the user evaluates them. Let’s 
explain it on example: 

Example 7. Imagine, we have one hotel which costs 70$/night and is located 2km far 
from the conference location. For a student this hotel is “cheap” with truth value 0.1 
and “near” with truth value 0.8. For a professor, the situation is a little bit different, 
this hotel is “cheap” and “near” with truth values 0.4. Finally, a manager of an inter-
national company evaluates this hotel as “cheap” with truth value 0.9 and “near” with 
truth value 0.1.  

We see (example 7) that every crisp attribute can be evaluated variously according to 
the user. This is an advantage of the fuzzy framework, that we can easily represent 
every type of “ordering of the domains of attributes”. This evaluations (orderings of 
attribute domains) we can easily represent by fuzzy membership functions (figure 1).  

Note, that in our approach we can easily encode all types of orderings, in case of 
continuous and discrete attribute domains, too (in case of continuous attributes, we 
discretize the attribute domain to intervals and we encode the ordering of these  
intervals).  
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Fig. 1. The four main types of fuzzy membership functions. The higher values the better, the 
lowest values the better, the middle values the better and the marginal values the better (from 
left to right). 

In the project NAZOU [19] we implemented to our algorithm a module which 
checks the ordering of the attribute domain. It is achieved by adjusted statistical re-
gression or by the algorithm QUIN [4] for learning qualitative models. Moreover, 
there is implemented a module, which allows to user to specify his/her orderings. 

7   Recent Work 

To create a more suitable set of rules using ILP in [1] an algorithm called FS FOIL 
was developed, that extends the original FOIL algorithm, modified to be able to han-
dle first order fuzzy predicates where cover compares confidence and support of 
fuzzy predicates. A version of FOIL that handles membership degree has already been 
developed in [20] but the rules induced still keep a classical meaning. In [17] a system 
enriching relational learning with several types of fuzzy rules - flexible, gradual and 
certainty - was introduced. In this approach a fuzzy rule is associated by crisp rules 
where the truth of a head is the same or complementary of the truth of a body (on an 
α-cut). These types of rules are considered in [18], too, where hypotheses are com-
puted by a fixed T-norm and are more flexible as in [17]. All these approaches are 
using vague linguistic hedges and are implemented in FOIL. All these approaches are 
using vague linguistic hedges and are implemented in FOIL. These approaches have 
some disadvantages: [20] uses only Lukasiewicz logic, [18] and [20] deals with fixed 
types of fuzzy rules, moreover in [18] the truth values of the head of a rule and the 
body have the same truth value (or they are complements α and 1-α) while in [20] a 
fixed t-norm (aggregation) is used in learning. 

As we mentioned before we do not know about any inductive GAP system. 
Our FILP task does not consider probability distributions as in probabilistic models 

[5]. Embedding of FILP to Bayesian Logic Programs (BLP) is studied in [22]. In [23] 
the transformations of GAP to several frameworks are introduced (shown on  
figure 2). In each of these models of logic programs we have sound and complete 
continuous semantics with production operator and minimal Herbrand model. More-
over all models have the syntactic and computational part same as in classical Logic 
Programs [16]. Models differ in quantitative (many valued, probabilistic) part. 

Finally, note that GAP (and thus FLP) differs from Logic Programs with Anno-
tated Disjunctions (LPAD) [3]. An LPAD rule is a first order logic clause where the 
head literals are annotated with probabilities ((h1:α1), (h2:α2), …, (hn:αn) ← b1, b2, …, 
bm), where hi and bi are crisp literals and αi∈[0,1]. As we see, this rule have no  
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annotated literals in body. Moreover in GAP rules α means the truth of a literal while 
in LPAD rule α means the probability of a literal being true (what is the difference 
between the fuzzy and probabilistic frameworks). 

 

Fig. 2. The transformations of GAP to models of Bayesian Logic Programs (BLP [13]), Bayes-
ian Nets (BN [8]), Definite Logic Programs with monotonicity axioms (DLPM) and a special 
monotonised version of BN (BNM) 

8   Conclusions 

The main contribution of paper was to give a correct and sound formal model of FILP 
and IGAP. For this purpose we described our complete and sound FLP model, our 
formal model of FILP is based on. We showed that FILP is a generalization of ILP. 
We introduced the framework of GAP (equivalent to FLP). This enables us to intro-
duce the formal model of IGAP. We showed that the IGAP is equivalent to FILP. We 
described our approach to IGAP and show that it is gap-consistent and thus, fuzzy-
consistent. We mentioned about fuzzy membership functions and stated that these 
functions are user specific and thus we can not compute with fixed fuzzy membership 
functions. We described an application of our approach for induction of user prefer-
ences in a web search application. Finally we described recent works in fuzzy ILP and 
compared GAP with other probabilistic approaches.  

Acknowledgement. Supported by Czech project 1ET 100300517 and Slovak projects 
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Abstract. Boosting is an established propositional learning method to
promote the predictive accuracy of weak learning algorithms, and has
achieved much empirical success. However, there have been relatively
few efforts to apply boosting to Inductive Logic Programming (ILP) ap-
proaches. We investigate the use of boosting descriptive ILP systems,
by proposing a novel algorithm for generating classification rules which
searches using a hybrid language bias/production rule approach, and a
new method for converting first-order classification rules to binary clas-
sifiers, which increases the predictive accuracy of the boosted classifiers.
We demonstrate that our boosted approach is competitive with normal
ILP systems in experiments with bioinformatics datasets.

1 Introduction

Inductive Logic Programming (ILP) has been very successful in application to
relational predictive tasks. Sophisticated predictive ILP systems, such as Progol
[1] and foil [2], can achieve high predictive accuracy, while the learning results
remain understandable. To achieve higher predictive accuracy, there have been
attempts to combine ILP with propositional learning algorithms, such as Support
Vector Machines [3]. While the predictive accuracy of such systems can be better
than ILP systems, the learning results can be less understandable due to the
complex representations employed.

Boosting [4] is an established method to increase the predictive accuracy of
other learning algorithms, which are known as base learners. The result of boost-
ing is a weighted sum of the predictions of the classifiers received from the base
learner, and therefore can be easily understood. Although boosting has many
advantageous characteristics, there have been relatively few efforts to apply it
to ILP systems. Some studies include [5], which applied AdaBoost [4] to the
ffoil ILP system, and [6], in which MolFea, a domain-specific ILP system,
was used as the base learner for AdaBoost. While these studies showed that the
predictive accuracy of ILP can often be increased by boosting, there is still much
room for improvement. In particular, the run-time performance of ILP systems
becomes an issue because AdaBoost has to invoke them many times to produce
base classifiers. This prevents boosting from running more iterations to achieve
higher predictive accuracy. Also, base classifiers generated by these ILP systems
tend to be fairly accurate, which causes boosting to converge quickly, hence it
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is liable to overfitting, particularly on noisy datasets. Moreover, boosting needs
to apply a weighting over training examples when the base learner is invoked,
and it expects that the base learner can minimise the weighted training error in-
stead of the normal one. As ILP systems are usually not able to handle weighted
examples, resampling is adopted, in which low weighted examples may be lost.

To attempt to overcome these weaknesses, we have investigated the use of
boosting with descriptive ILP systems, which generate first-order classification
rules from training data in a class-blind manner. In order to control the gener-
ation of classification rules, we have introduced a novel descriptive ILP system
that employs a declarative language bias which in turn enables a new method to
convert classification rules to binary classifiers. We present the results of this ap-
proach for four bioinformatics datasets, and show that our method is competitive
with state of the art ILP systems.

This paper is structured as follows. Section 2 gives a brief introduction to de-
scriptive ILP and boosting algorithms. An overview of our boosted descriptive
ILP approach is given at the beginning of section 3, followed by the details of
the language bias, rule conversion and boosting steps. The benefits of combin-
ing boosting with ILP is also explained. Our experiments with bioinformatics
datasets are described in section 4, and we describe some directions for further
work in section 5.

2 Background

2.1 Boosting

Boosting is a machine learning algorithm that attempts to increase the pre-
dictive accuracy of a weak learning algorithm (known as a base learner) by
aggregating multiple classifiers from it (known as base classifiers). Early stud-
ies of boosting were motivated by Kearns and Valiant’s research on the PAC
learning model [7]. The most widely used boosting algorithm, AdaBoost, was
introduced by Freund and Schapire [4]. AdaBoost is simple to implement, and
has many favourable characteristics. In particular, while the learning algorithm
is understood as a stepwise optimisation [8] in training accuracy, its generalisa-
tion error is efficiently bounded by margins independent of the number of base
classifiers [9,10]. The effectiveness of AdaBoost at minimising margins was ob-
served in early experiments: the generalisation error often keeps dropping even
after the training error reaches zero. However, it was later found that AdaBoost
does overfit sometimes, especially when the data is noisy [11]. A strong connec-
tion between AdaBoost and logistic regression was also discovered [12], which
showed that both algorithms essentially solve the same constrained optimisation
problems.

The AdaBoost algorithm tries to construct an accurate combining classifier via
a weighted majority vote of base classifiers. The base classifiers are obtained by
repeatedly calling the base learner, which is supplied with a weighting that affects
the evaluation of training errors of the base learner. Each time it is called, the
base learner is applied to the training examples and returns the classifier which
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minimises the weighted training error. AdaBoost then chooses a weight for the
received base classifier according to the weighted training error and updates the
weighting of training examples such that the total weight of correctly classified
examples are the same as that of misclassified examples. This process is repeated
until AdaBoost has received a specified number of base classifiers – a typical
setting of 200 to 300 base classifiers is widely used. The final classifier is the
weighted sum of all of the received base classifiers.

2.2 Descriptive ILP

In contrast to predictive learning, which learns a target concept from labelled
examples, a descriptive learning system requires no class labels when perform-
ing non-predictive learning tasks such as association rule learning and frequent
pattern discovery. Descriptive ILP systems often perform learning from inter-
pretations [13], assuming each training example is an independent set of ground
facts and using coverage tests to validate candidate rules or patterns. Such pat-
terns are referred to as classification rules in this paper, as each rule specifies a
binary classification of objects according to the truth-value. Without any limita-
tion, descriptive ILP systems search over an excessively large rule space, and this
may require an impractically long time to finish. To avoid this problem, search-
ing is often limited to a specific type of rule specified by an explicit declarative
language bias. Well known descriptive ILP systems include Claudien [14] and
HR [15].
Claudien performs characterising induction on positive examples to produce

classification rules which characterise training examples. To restrict the language
to search over, Claudien employs the Dlab language bias. Dlab defines the
syntax of association rules by using a grammar that has the expressive power of
a regular expression, but with a more convenient notation.

We refer to this type of language bias as a syntactical language bias. In con-
trast, other ILP systems use a constructive language bias, which operates by
repeatedly applying production rules to existing classification rules to construct
new ones. Note that in a syntactical language bias, production rules are used
differently, namely to develop an intermediate rule into either another interme-
diate rule or a classification rule (as is the case in a context-free grammar). An
important difference between the two types of language biases is that construc-
tive language biases typically allow for recursive language definitions, producing
infinite language spaces and usually requiring classification rules to meet other
constraints, such as the maximum number of literals in a rule. In contrast, syn-
tactical language biases generally do not take recursive definitions, and produce
a finite search space.

HR is a descriptive ILP system that performs automated theory formation via
a constructive language bias [15]. Starting from a set of initial classification rules
provided as background knowledge, HR repeatedly applies a set of production
rules to develop an existing rule or combine two existing rules. For instance,
the compose rule makes conjunctions of two existing classification rules, while
the split rule instantiates some variables in an existing classification rule. HR
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employs a weighted sum – with weights provided by the user – of measures of
interestingness to guide the search for classification rules.

3 Boosting Descriptive ILP

Our boosted descriptive ILP approach is composed of three steps:

Rule generation. In this step, a new descriptive ILP system, WeakILP, is used
to produce a set of first order classification rules, which are specified in a
syntactical language bias. The rules may have to meet certain criteria with
respect to training examples and background knowledge.

Rule conversion. In this step, the received classification rules are converted
into binary classifiers, from which boosting chooses base classifiers. Different
rule conversion methods may be used, as discussed in section 3.2.

Boosting. In this step, we use an adaptation of AdaBoost to choose some classi-
fiers to aggregate into the boosted classifier. Instead of specifying the number
of base classifiers in advance, we employ cross validation sets to determine
when to stop adding base classifiers.

Compared to existing boosted ILP approaches, our descriptive ILP based
approach has certain advantages. Firstly, the new framework separates the ILP
and boosting steps, which avoids the necessity of resampling weighted examples.
Hence, the boosting step can handle weightings of examples more accurately.
Secondly, the learning process is more efficient, because descriptive ILP is invoked
only once. This enables boosting to run as many rounds as necessary without
significant increase in computational time. In previous boosted ILP experiments,
such as [5], the number of base classifiers was set to between 10 and 20, whereas
the typical setting in our experiments is between 50 and 200 base classifiers. In
general, this means that a higher predictive accuracy can be achieved. Thirdly,
although some predictive ILP systems may produce multiple classification rules
at once, descriptive ILP can make better use of boosting. Boosting’s performance
is conditional on the ability of the base learner to return a proper1 base classifier
for arbitrarily weighted training examples. As descriptive ILP does not have a
target concept to learn, classification rules from it describe a wide variety of
classifications of training examples. Hence, rules from a descriptive ILP system
are much more likely to fit different weightings than those from predictive ILP,
which enables boosting to perform properly.

3.1 Rule Generation

Our approach employs descriptive ILP to exhaustively generate classification
rules, regardless of accuracy. In contrast to predictive ILP which produces only
a few of the most accurate rules, the number of rules generated in this step may
1 The weighted training error of a proper base classifier must be less than 50% for

binary learning tasks.
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be quite large. Hence, to improve efficiency, it is essential to have an expressive
language bias to specify a language where no rule is irrelevant to the learning
target.

As an example, a typical learning task in bioinformatics is to predict a certain
biological characteristic of a molecule given its structural information, usually
atoms in the molecule and bonds between atoms. For simplicity, we assume
the predicates are of the form: atom(X, A, E) and bond(X, A, B), where X is
the unique identifier of a molecule, A and B are atoms, and E represents the
element type of atom A. Continuing with the example, suppose that domain
experts believe that the biological characteristic is determined by linear (i.e.,
non-cyclic) connected substructures of the molecule. In this case, we need a
language which specifies a sequence of atoms of any type and any length.

This is not straightforward to specify with existing syntactical language biases,
as the maximum number of variables in the rule is indefinite due to the indefinite
length of the sequence. Hence, because existing syntactical language biases do not
allow recursive production rules, to cover all rules in this language, we have to use
a more powerful language specification. However, existing constructive language
biases also have difficulty to restrict rules to non-cyclic sequences of atoms, and
often an excessive number of irrelevant rules are produced. Our solution has been
to develop a new light-weight descriptive ILP system, called WeakILP, which uses
a syntactical language bias of more expressive power. WeakILP allows recursive
production rules and can employ a novel rule conversion approach.

Language bias
A classification rule in WeakILP has the following form:

rule(X, {X1, X2, . . .}) : Body

where X represents the object to classify (i.e., a training or test set example),
{X1, X2, . . .} is a set of key variables which occur in the Body, which is a well-
formed formula in first-order logic2, though it is often a conjunction of literals.
For example, below is a rule specifying a non-cyclic sub-molecule structure:

rule(X, {A, B, C}) : atom(X, A, o) ∧ bond(X, A, B) ∧ bond(X, B, C) ∧ atom(X,C, n)

where X is the molecule to classify and A, B and C are strictly different atoms.
The set of key variables is referred to as a key set, which is used to highlight

interesting properties or structures of the rule. In the above example, the vari-
ables A, B and C can help identify each unique occurrence of the substructure.
To specify key sets for classification rules and allow recursive definitions in the
language, WeakILP adopts a new syntactical language bias. The language bias
defines the grammar of classification rules by using production rules.
2 Note that Body is not theoretically restricted to first-order logic, as the language bias

is simply a set of grammatical definitions. Any logic can be accepted if the produced
rules can be interpreted by the runtime system. Our current implementation is based
on Prolog, hence rules are restricted to Prolog queries. In the experiments presented
here, all classification rules are a conjunction of literals.
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A grammar is composed of several production rules: A1 → B1, . . . , Ak → Bk,
where each Ai is a positive literal or a function symbol, to be replaced by one of
the formulae on the right-hand side, and Bi is a well-formed formula. Each Ai

is a nonterminal symbol, as defined below.

Definition 1 (Terminal and Nonterminal symbols). A nonterminal sym-
bol is any positive literal which occurs on the left-hand side of a production rule,
and may or may not be ground. The nonterminal symbol is in fact a placeholder,
which is absent from the produced classification rules. On the other hand, literals
which must occur in the produced classification rules are called terminal symbols.

Note that, to avoid confusion, any nonterminal symbol must not be used as a
terminal symbol.

A replacing formula, Bi, can be any well-formed logic formula, which may
include nonterminal symbols to allow recursive definitions of rules. In particular,
to allow the specification of the key set, some variables may be enclosed by the
function symbol key/1. In the generated classification rules (which include no
nonterminal symbol), if a variable occurs in a key/1 functor, it will be put into
the key set, and the functor itself will be ignored.

The following is an example of the syntactical grammar which defines a se-
quence of atoms of arbitrary length for the above bioinformatics problem.

rule(X)→ sequence(X, key(A) ∧ key(B))
sequence(X, A, B)→ bond(X, A, B)
sequence(X, A, B)→ bond(X, A, key(C)) ∧ sequence(X, key(C), B)

The above grammar produces classification rules, of which the key set com-
prises all atoms in a sequence of atoms. For instance, the grammar can pro-
duce the rule bond(key(A), key(C)), bond(key(C), key(B)), which is interpreted
as this classification rule, which defines a sequence of three connected atoms:
rule(X, {A, B, C}) : bond(X, A, C) ∧ bond(X, C, B). Note that the key/1 func-
tor enclosing variables A, B and C has been removed, and these variables have
been put into the key set (the importance of which becomes clearer when this
classification rule is interpreted as a binary classifier, as described below).

When a production rule is chosen to apply to a formula which contains non-
terminal symbols, one of the nonterminals is replaced by the formula defined
in the production rule. The replacing continues until there are no nonterminal
symbols left. More formally, the application of a production rule to a formula
including nonterminals is defined as follows:

Definition 2 (Application of production rules). Given a well-formed for-
mula F (A′), where A′ is an occurrence of some nonterminal symbol in F (A′), a
production rule A → B can be applied to A′ if and only if there is a unification
of A′ and A. Suppose θ is the most general unifier of A′ and A. Application of
the production rule to A′ of F (A′) produces a well-formed formula F (B)θ.

The generation of classification rules starts from a rule including only one non-
terminal symbol, known as the start symbol: rule(X). The language defined by
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a grammar is the set of all classification rules that contain no nonterminal sym-
bols and can be derived from the start symbol by applying production rules.
Note that, when there are recursive production rules in a grammar, the set of
rules defined by the grammar may be infinite. Therefore, it is often necessary to
specify a maximum length of classification rules or the maximum steps to derive
a classification. Some classification rules defined by the above grammar include:

rule(X, {A, B}) : bond(X, A, B)
rule(X, {A, C, B}) : bond(X, A, C) ∧ bond(X, C, B)

rule(X, {A, C, D, B}) : bond(X, A, C) ∧ bond(X, C, D) ∧ bond(X, D, B)

Importantly, the key set can be used for counting purposes. For instance, in
the above example, suppose we require variables to be instantiated into strictly
different constants. In this case, we can count different ground instantiations of
rules for a molecule, which gives information about the occurrences of a specific
substructure. This information is then used to obtain more sophisticated base
classifiers, as described in section 3.2.

The following grammar extends the above example grammar with atom/3
predicates to restrict the element type of atoms. For the purposes of the example,
we specify that the first and last atoms in a sequence must be assigned a specific
element, with other atoms being optional.

rule(X) → atomtype(X, A) ∧ sequence(X, key(A), key(B)) ∧ atomtype(X, B)

sequence(X, A, B) → bond(X, A, B)

sequence(X, A, B) → bond(X, A, key(C)) ∧ optional(X, C) ∧ sequence(X, key(C), B)

optional(X, A) → atom(X, A, )

optional(X, A) → atomtype(X, A)

atomtype(X, A) → atom(X, A, o)

atomtype(X, A) → atom(X, A, n)

atomtype(X, A) → atom(X, A, c)

atomtype(X, A) → atom(X, A, h)

Continuing the example, we add production rules to the above grammar, so
that the generated classification rules will include combinations of genotoxicity
properties of a molecule, such as salmonella/1, cytogen/1, and drosophila/1.

rule(X)→ properties(X, 2) ∧ atom(X, A)
∧sequence(X, key(A), key(B)) ∧ atom(X, B)

property(X, Last, New)→ salmonella(X)
properties(X, N)→ salmonella(X)∧ properties1(X, M)
properties(X, N)→ properties1(X, N)

properties1(X, N)→ cytogen(X) ∧ properties2(X, M)
properties1(X, N)→ properties2(X, N)
properties2(X, N)→ drosophila(X, N)
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Pruning
Given a grammar as above, WeakILP exhaustively produces all classification
rules in the language, except those which are true for fewer examples than re-
quested by a user-specified minimum coverage. Such pruning is mainly to im-
prove computational efficiency. In the case that a classification rule covers no
training examples, it cannot contribute to classification, because its training ac-
curacy could not be higher than the default classifier regardless of weighting over
training examples. As a consequence, boosting does not choose a base classifier
derived from a classification rule of zero coverage. Moreover, those rules that
cover very few training examples may be too specific to these examples, and
might not affect the training result significantly. Pruning those examples can
dramatically reduce the number of classifiers that boosting has to evaluate.

3.2 Rule Conversion

For predictive learning tasks, we convert first-order classification rules from de-
scriptive ILP into binary classifiers according to their evaluation for each training
example, as described below. These classifiers are then used as candidate base
classifiers for boosting. We have experimented with the conventional method for
performing this conversion which uses truth values. We have also experimented
with a novel method which finds coefficients of instantiations, as described below.

Truth-based Conversion Method
An intuitive means for converting a classification rule into a classifier is based
on its truth-value for each example, which is the method adopted in previous
attempts to combine ILP with propositional learning systems [6,5]. In this case,
supposing that R(X, K) is a classification rule, then the corresponding classifier
is defined as:

f(xi) =
{

+1 if R(xi, K) is true
−1 otherwise

where R(xi, K) is the instantiation of R(X, K) gained by replacing X with a
specific example xi.

Instantiation-based Conversion Method
We also propose a different rule conversion method based on the number of ground
instantiations of the classification rule. Given a classification rule R(X, K), the
corresponding binary classifiers are defined as:

f(xi, β) =
{

+1 if
∣
∣ {Kθ |R(xi, K)θ is ground and true}

∣
∣ ≥ β

−1 otherwise

where β is a non-negative integer and θ is a ground substitution that maps
variables into ground terms.

As R(xi, K)θ is ground, the substituted key set Kθ is also ground. The set
{Kθ |R(xi, K)θ is ground and true} is therefore the set of all ground instantia-
tions of the key variables that make the classification rule R(X, K) true for the
example xi. The cardinality of the instantiation set counts the different key sets
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that make the classification rule true for the example, which can be understood
as the degree to which a rule holds for an example. Note that only instantiations
of the key set to strictly different ground instances are counted, and permutations
of an instantiation which has been counted already are similarly not counted.

To illustrate this novel rule conversion method, we consider the above bioin-
formatics problem. Each rule defined in the language represents a non-cyclic
sequence of atoms. The key set is composed of the atom variables, therefore the
cardinality of the instantiation set describes the number of distinct occurrences
of the sequence in a molecule. Illustrated below are 6 instantiations of this classi-
fication rule: rule(X, {A, B, C}) : bond(X, A, B), bond(X, B, C), for a particular
example xi.

rule(xi, {a, b, c}) : bond(xi, a, b), bond(X, b, c) (1)
rule(xi, {c, b, a}) : bond(xi, c, b), bond(X, b, a) (2)

rule(xi, {a, b}) : bond(xi, a, b), bond(X, b, a) (3)
rule(xi, {b, a}) : bond(xi, b, a), bond(X, a, b) (4)
rule(xi, {b, c}) : bond(xi, b, c), bond(X, c, b) (5)
rule(xi, {c, b}) : bond(xi, c, b), bond(X, b, c) (6)

We note that only instantiation (1) will be counted. This is because the key
set in (2) is a permutation of that in (1), and instantiations (3), (4), (5) and
(6) have instantiated two variables to the same ground term, hence are not
counted. Therefore, for this classification rule, the instantiation coefficient used
in the second rule conversion method described above will be 1. Note that the
requirement to instantiate to strictly different terms is referred to in Claudien

as injectivity. Note also that the first conversion method is clearly a special case
of the second method, namely when β is set to 1, and, when β is set to 0, f(xi, β)
is a naive classifier that gives the same positive prediction for any example.

Further Pruning
When the instantiation-based conversion is adopted, each classification rule cor-
responds to multiple binary classifiers with different choices of the parameter
β. To improve efficiency, we prune certain classifiers. In many descriptive ILP
systems, a prover is used to determine whether two rules are logically equiv-
alent. Logically equivalent rules can be safely pruned, as they always give the
same prediction with respect to the background theory. In WeakILP, we choose
to prune any classifier which gives the same predictions for training examples
as another, i.e., predictively equivalent classifiers. Note that such pruning does
not affect the learning process of boosting, as the boosting algorithm cannot
distinguish those classifiers, and might randomly (depending on the implemen-
tation) choose one of them as a base classifier when appropriate. As all logically
equivalent classifiers must also be predictively equivalent, this approach is more
efficient in reducing redundant classifiers than using a logic prover.

However, because the converse statement is not true, i.e., predictively equiv-
alent classifiers are not necessarily logically equivalent, predictively equivalent
classifiers (for training examples) might give different predictions for test
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examples. It has been suggested in [16] that a syntactically less complex clas-
sifier tends to have better generalization performance than a more specific one.
Hence, we choose to prune the more complex classifiers, i.e., in WeakILP, given
a set of predictively equivalent classifiers, we take the shortest one in terms of
the number of literals in the classification rule.

3.3 Boosting

Once binary classifiers are produced, the AdaBoost algorithm will be applied
to construct a combining classifier from them. The boosting algorithm is pre-
sented in Figure 1, in which boosting does not invoke a separate base learner to
obtain base classifiers, but, instead, evaluates received binary classifiers against
weighted examples directly and chooses the one of the highest weighted accuracy.

Given (x1, y1), . . . , (xm, ym) where xi ∈ X, yi ∈ Y = {+1,−1}
Initialise d1(xi) = 1/m for each example xi

Generate candidate base classifiers Γ from descriptive ILP
For t = 1, . . . , T :

– select ht(x) ∈ Γ to minimise εt =
�

i ht(xi)yidt(xi)
– let αt = 1

2 ln 1−εt
εt

– update dt+1(xi) = dt(xi) exp(−αtyiht(xi))
Output the final classifier: H(x) = sign

��
t αtht(x)

�

Fig. 1. The boosting descriptive ILP algorithm, where T is the specified number of
base classifiers to combine in the boosted classifier

In experiments with boosting, the learning results are often presented on a
stepwise basis, i.e., results after every step are listed. This is particularly use-
ful to demonstrate the efficiency of boosting for improving the accuracy of the
base learner. However, it is more appropriate to evaluate the generalisation per-
formance of the learning algorithm as a whole. This is because, in practical
applications, we have to choose a combining classifier produced at a particular
step. Hence, we need to estimate AdaBoost’s parameter, i.e., determine when to
stop adding base classifiers to the boosted classifier.

For our experiments, when n-fold cross validation is used for an experiment,
we use (n − 1)-fold cross validation to evaluate the parameter on the training
set. This strategy roughly maintains the size of the validation sets employed
comparable to that of the test set. Hence, after each base classifier is added to the
boosted classifier, we use 9-fold cross validation over the training set to determine
the performance of the boosted classifier. Our system then backtracks to the
boosted classifier which performed best, and outputs this as the final result. We
have found that this improves performance over the usage of a single validation
set. In the case of separate training and test sets, 10-fold cross validation is
typically used.
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4 Experiments with Bioinformatics Datasets

We performed experiments with four bioinformatics datasets: mutagenicity [17],
DSSTox [3], carcinogenicity [18], and KDD Cup 2001 [19]. For each dataset, we
evaluated our method using four different settings: WeakILP with and without
boosting and using both of the rule conversion methods. When WeakILP was used
without boosting, we chose the most accurate classifier in terms of predictive ac-
curacy on training examples. We performed cross validation for all datasets except
the KDD Cup dataset (which has a independent test set) to estimate the generali-
sation performance. In the KDD Cup dataset, for pruning purposes, the minimum
coverage of classification rules was set to 15 to reduce the number of classifiers pro-
duced. In all the other experiments, we used a minimum coverage of one.

– Mutagenicity. The mutagenicity problem, reported in [17], is one of the
most widely used datasets in ILP. The task regards learning a theory of
mutagenesis from a set of 188 nitroaromatic molecules, of which 125 are
mutagenic (active) and 63 are non-mutagenic (non-active). The background
knowledge includes atoms which occur in a molecule, bonds between the
atoms, certain chemical features, structural attributes, and predefined func-
tion groups in the molecule. The language bias used for this experiment is
presented in table 1. The maximum length of classification rules was set to
be 4. We performed 10-fold cross validation to estimate the generalisation
performance on this dataset. Table 2 gives a partial example of an output
combining classifier, which achieves a predictive accuracy of 89.47% (on both
training and test examples) when six base classifiers are chosen.

– DSSTox. DSSTox is the predictive toxicity dataset used in [3], which con-
sists of 576 molecules. The language bias and other settings were the same
as in the mutagenicity experiment, except that 5-fold cross validation was
used, to be consistent with the previous study [3].

– Carcinogenicity. The carcinogenicity dataset includes 337 chemicals, which
is composed of both training and test datasets used from a previous predic-
tive toxicology competition. The task is to predict the cancerous activity
of the chemicals. Similar settings were used in this experiment as with the
mutagenicity dataset, except that the language bias allowed arbitrary com-
binations of genotoxicity properties and structural indicators [18].

– KDDCup2001.This competition [19] was composed of three tasks, of which
we consider only the second task, the prediction of functions of genes. The
dataset consists of 862 genes as training examples and 381 genes as test ex-
amples. Each gene can belong to any combination of 14 classes, so we can break
down the leaning task into 14 binary classification sub-tasks. We used a lan-
guage bias similar to that used in [20], except that no negation was allowed.

Table 2 shows a typical training result from our boosted WeakILP experi-
ments. We found most weightings concentrate on the first few base classifiers
and if we reduce the boosted classifier to ten base classifiers, in most cases, the



286 N. Jiang and S. Colton

Table 1. Language bias for the mutagenicity dataset. Production rules with the same
left-hand side nonterminal symbol are grouped together for ease of reading.

bound type(X,A, B) → bond(X, key(A), key(B), 1) or
bond(X, key(A), key(B), 2) or
. . .

atom type(X,B) → atom(X,B, h) or
atom(X,B, c) or
. . .

connection(X, A, B) → bond type(X,A, B) or
bond type(X,A, B) ∧ atom type(X,B)

sequence(X,A, B) → connection(X, A,B) or
connection(X, A,C) ∧ sequence(X,C, B)

structure(X,A, B) → arc(X, A, B) or
arc(X, A, B) ∧ structure(X,A,B) or
arc(X, A, C) ∧ arc(X, C, B) ∧ structure(X,C, D)

rule(X) → structure(X,A, B) or
atom type(X,A) ∧ structure(X,A, B)

Table 2. The first six base classifiers of a boosted classifier for the mutagenicity dataset.
Acc. represents the test accuracy of the corresponding combining classifier. Wt. is the
weight assigned to the corresponding base classifier. Pred. is the prediction of the base
classifier, which may be either active (+), or non-active (-). We only give the body of
the classification rule, as all variables except X are key variables. The classifier is read
as: the molecule is Pred. if the number of ground instantiations is equal to or greater
than the threshold, β.

Acc. Wt. Pred. β Body of the classification rule

73.68% 0.82 + 16 bond(X, A,C, 1) ∧ bond(X, C, B, 7).

73.68% 0.45 + 6 bond(X, A,C, 2) ∧ bond(X, C, D, 1) ∧ bond(X, D, E, 7)
∧bond(X, E, B, 7).

73.68% 0.37 + 28 bond(X, A,B, 7).

73.68% 0.43 − 2 bond(X, A,C, 1) ∧ atom(X,C, o) ∧ bond(X, C, B, 1)
∧atom(X, B, c).

78.94% 0.38 + 8 bond(X, A,C, 1) ∧ bond(X, C, B, 1) ∧ bond(X, C, D, 1)
∧atom(X, D, c).

89.47% 0.28 − 16 bond(X, A,C, 1) ∧ bond(X, C, D, 7) ∧ bond(X, D, B, 1)
∧atom(X, B, h).

result is still fairly accurate but much simpler. Hence, the training result can be
made more understandable at a minor cost to predictive accuracy. Table 3 lists
the predictive accuracies of WeakILP and boosted WeakILP using both rule con-
version methods. The result shows that with only one exception, boosting is able
to improve the generalization performance of WeakILP, and the improvement is
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Table 3. Test accuracy or estimated generalization accuracy of WeakILP and boosted
WeakILP for the four datasets, using truth-value and instantiation based rule conver-
sion methods

Rule conversion Truth-value based Instantiation based

Boosting WeakILP boosted WeakILP boosted

Mutagenicity 66.5% 76.6% 80.9% 90.5%

DSSTox 63.0% 66.1% 68.4% 75.6%

Carcinogenicity 58.4% 57.5% 58.7% 61.1%

KDD Cup 2001 90.5% 91.8% 90.5% 91.8%

Table 4. The comparison of our boosted WeakILP approaches with other state of the
art systems. The results for the mutagenicity dataset are mostly taken from [21] and
the results for DSSTox are from [3]. RELAGGS was the winner of KDD Cup 2001
task 2 [19] and ICL results are collected from [20]. Aleph results are based on [22]. It is
worth noting that many experiments were done in different settings, including different
background knowledge and performance estimation. † This result has large variations
between 60% and 64% in different bagging steps. ‡ The STILL experiment did not
perform 10-fold cross validation, but held 10% examples back as test examples. †† All
other methods except boosted WeakILP had access to background knowledge which is
not currently available in the public domain.

Category Method Mutagenesis Carcinogenesis DSSTox †† KDD Cup 2001

ILP Progol 88.0% 55.0%
FOIL 86.7%
STILL 93.6%‡
ICL 88.3% 92.2%

Aleph 88.8% 57.9%

Kernel SVILP 73.0%
based CHEM 58.0%

MIK 93.0% 60.0%
PLS 71.0%

Bagging/ RS 95.8%
Boosting Bagging Aleph 64.0%†
Based Boosted FFOIL 88.3%

Boosted WeakILP 90.5% 61.1% 59.3% 91.8%

Others RELAGGS 88.0% 93.0%

more than 10% in two out of four datasets. We also observed that the new
instantiation-based rule conversion method resulted in better test accuracy with
no exceptions, and when used together with the boosted WeakILP approach, it
always produces better predictive accuracy than with other settings. We compare
our results (using boosted WeakILP with the instantiation based rule conversion)
with other methods in Table 4. The predictive accuracy we achieve is in line with
the top ranking approaches for all experiments except DSSTox. Note that all the
other methods had access to certain more sophisticated background information
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for the DSSTox dataset, which was not available to us. Our experiments involved
minimum use of background knowledge, and we hope to improve our results by
using more background knowledge.

5 Conclusions and Further Work

We have explored the use of boosted descriptive ILP for predictive learning tasks,
and presented some experimental results for bioinformatics datasets. The main
contributions of our study include the following:

– We distinguish two types of language biases, namely constructive and syn-
tactical, and we highlight the limitation of existing language biases.

– To take advantage of both types of language biases, we suggest a new declar-
ative language bias, used in our WeakILP system. The new language bias
adopts a context-free style grammar to define languages, which is more ex-
pressive than Dlab in that it allows recursive definitions of the language.

– We have proposed a new propositionalization technique, which counts the
ground instantiations of a logic rule to indicate the degree that the classi-
fication rule supports its prediction. This approach has been shown to be
effective in some learning tasks, in which both training and test accuracies
have been improved significantly.

– We have shown that the boosted WeakILP approach performs well with
four bioinformatics datasets, and it outperforms many widely used ILP sys-
tems. Hence, there is some evidence that the boosted WeakILP approach
is competitive with state of the art ILP systems in terms of predictive ac-
curacy. This is encouraging, especially given that the learning results are
understandable compared to other propositionalization based methods.

In further work, we plan to perform further experiments to investigate both run-
time and predictive performance of the proposed approach in non-bioinformatics
domains. Also, further theoretical and experimental studies are necessary to com-
pare the performance of boosting with other machine learning methods including
SVM and logistic regression. Moreover, we aim to find a theoretical explanation
to answer questions about when our approach is suitable and when it is not.
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Abstract. The need to measure sequence similarity arises in many ap-
plicitation domains and often coincides with sequence alignment: the
more similar two sequences are, the better they can be aligned. Aligning
sequences not only shows how similar sequences are, it also shows where
there are differences and correspondences between the sequences.

Traditionally, the alignment has been considered for sequences of flat
symbols only. Many real world sequences such as natural language sen-
tences and protein secondary structures, however, exhibit rich internal
structures. This is akin to the problem of dealing with structured exam-
ples studied in the field of inductive logic programming (ILP). In this pa-
per, we introduce Real, which is a powerful, yet simple approach to align
sequence of structured symbols using well-established ILP distance mea-
sures within traditional alignment methods. Although straight-forward,
experiments on protein data and Medline abstracts show that this ap-
proach works well in practice, that the resulting alignments can indeed
provide more information than flat ones, and that they are meaningful
to experts when represented graphically.

1 Introduction

Sequential data are ubiquitous and are of interest to many communities. Such
data can be found in virtually all application areas of machine learning including
computational biology, user modeling, speech recognition, empirical natural lan-
guage processing, activity recognition, information extractions, etc. Therefore,
it is not surprising that sequential data has been the subject of active research
for decades. One of the many tasks investigated is that of sequence alignment.
Informally speaking, a sequence alignment is a way of arranging sequences to
emphasize their regions of similarity. Sequence alignments are employed in a va-
riety of domains: in bioinformatics they are for instance used to identify similar
DNA sequence, to produce phylogenetic trees, and to develop homology models
of protein structures; in empirical language processing, they are for instance used
for automatically summarizing, paraphrasing, and translating texts.

Most of the alignment approaches assume sequences of flat symbols. Many
sequences occurring in real-world problems such as in computational biology,
planning, and user modeling, natural language processing, however, exhibit in-
ternal structure. The elements of such sequences can be seen as atoms in a
relational logic.

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 290–304, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Example 1. Consider the following sentence adapted from [1]: ’A purple latex
balloon blew himself up in a southern city Wednesday, bursting two other balloons
and deforming 27’. The sentences actually provides much more complex data
than shown. Applying Brill’s rule-based part of speech tagger, cf. [2], which is
one of the most widely used tools for assigning parts of speech to words, yields
the following sequence of structured objects:

dt(a), jj(purple), nn(latex), nn(balloon), vbd(blew), prp(himself), in(up),
in(in), dt(a), jj(southern), nn(city), nnp(wednesday), comma, vbg(bursting),

cd(two), jj(other), nns(balloons), cc(and), vbg(deforming), cd(27)

The application of traditional alignment algorithms to such sequences requires
one to either ignore the structure of the atoms, which results in a loss of infor-
mation, or to take all possible combinations of arguments into account, which
leads to a combinatorial explosion in the number of parameters. In other words,
relational sequence alignment is a significant problem.

Surprisingly few works have investigated sequences of complex objects so far.
Ketterlin [14] considered the clustering of sequences of complex objects but
did not employ logical concepts. Likewise, Jiang et al. [11] and Weskamp et
al. [27] proposed alignment algorithms for trees respectively graphs. Lee and De
Raedt [15] and Jacobs [10] introduced ILP frameworks for reasoning and learn-
ing with relational sequences. Recently, Tobudic and Widmer [26] used relational
instance-based learning for mining music data, where sequential, relational in-
formation is employed. To the best of our knowledge, however, none of these
works investigate the alignment of relational sequences.

Indeed within bioinformatics most advances of sequence alignment for biolog-
ical sequence analysis (see [6] for a good overview) have been made by incorpo-
rating additional sources of information such as sequence profiles or secondary
structure predictions. As these works demonstrate, incorporating additional in-
formation can often yield considerable benefits to alignment quality. These meth-
ods, however, do not employ relational sequences, are domain-dependent and do
not easily generalize across different domains. Therefore, Do et al. [5], McCal-
lum el al. [17], Parker et al. [21] and Sato and Sakakibara [24] proposed more
advanced probabilistic methods such as conditional random fields (CRFs) to dis-
criminatively learn edit distances for propositional strings and trees [24]. CRFs
allow to use arbitrary even relational features [8] to define the potential functions
involved. This, however, leaves one with the difficult task of choosing the right
representation or with the difficult task of automatically selecting the features
form data, see e.g. [8]. This might explain why CRFs have so far not been used
for aligning relational sequences.

In this context, we present Real: a general, domain-independent approach
to relational sequence alignments and logos. The contributions of Real are
three-fold. First of all, Real is a simple, yet powerful approach to align rela-
tional sequences. In particular, we propose to use well-established ILP distance
measures within traditional alignment methods. Second, it defines the informa-
tion content of relational sequence alignments. This is an important question
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as it allows to evaluate alignments of and to find common motifs in relational
sequences. Moreover, it can be graphically represented by so-called relational
sequence logos, which are the third contribution of Real. Although straight-
forward, experiments on real world data show that Real works well in practice,
that the resulting alignments can indeed provide more information than flat
ones, and that the logos generated are meaningful to experts.

We proceed as follows. After discussing related work, we review basic align-
ment algorithms in Section 2. Then, we discuss relational sequences and rela-
tional distance measures in Section 3. Afterwards, in Section 3.1, we define the
information content of relational sequence alignments. Based on this, we intro-
duce relational sequences logos in Section 4. Before concluding, we empirically
evaluate Real on real-world data sets.

2 Sequence Alignment Algorithms

Alignment plays a major role in analyzing biological sequences. Consider e.g. the
protein fold recognition problem, which is concerned with how proteins fold in
nature, i.e., their three-dimensional structures. This is an important problem as
the biological functions of proteins depend on the way they fold. Given a sequence
of an unknown protein (query sequence) all approaches work in principle in a
similar fashion: they scan an existing database of amino acids sequences (from
more or less known proteins) and extract the most similar ones with regard to
the query sequence. The result is usually a list, ordered by some score, with
the best hits at the top of this list. The common approach for biologists, is to
investigate these top scoring alignments or hits to conclude about the function,
shape, or other features of query sequence.

One of the earliest alignment algorithm is that for global alignment by Needle-
man and Wunsch in 1970 [19]. The algorithm is based on dynamic programming,
and finds the alignment of two sequences with the maximal overall similarity
w.r.t. a given pairwise similarity model. In the biological domain, this similarity
model is typically represented by pair-wise similarity or dissimilarity scores of
pairs of amino acids. These scores are commonly specified by using a so-called
similarity matrix, like the PAM [4] or BLOSUM [9] families of substitution ma-
trices. The scores, or costs, associated with a match or mismatch between two
amino acids, reflect to some extent the probability that this change in amino
acids might have occurred over time of evolution.

More precisely, the Needleman-Wunsch algorithm proceeds as follows: ini-
tially, for two sequences of length m and n, a matrix with m + 1 columns and
n + 1 rows is created. The matrix then is filled with the maximum score as
follows:

Mi,j = max

⎧
⎪⎨

⎪⎩

Mi−1,j−1 + Si,j : a match or mismatch
Mi,j−1 + w : a gap in the first sequence
Mi−1,j + w : gap in the second sequence

(1)
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where Si,j is pairwise similarity of amino acids and w reflects a linear gap (insert
step) penalty. The overall score of the alignment can be found in cell Mm,n.

To calculate the best local alignment of two sequences, one often employs
the Smith-Waterman local alignment algorithm [25]. The main difference in this
algorithm when compared to the Needleman-Wunsch algorithm, is that all nega-
tive scores are set to 0. When visualizing the resulting alignment matrix, strands
of non negative numbers correspond to a good local alignment. For both algo-
rithms versions using affine gaps costs exist, i.e. one employs different kind of
gap costs for opening a gap or for extending one. To discourage the splitting of
connected regions due the enforcement of a gap in the middle of the alignment,
commonly extra gaps are allowed to be inserted at the end and at the beginning
at either no additional costs or relatively low costs (padding costs).

In general, the alignments resulting from an global or local alignment, show
then the more conserved regions between two sequences. To enhance the de-
tection of these conserved regions, commonly multiple sequence alignments are
constructed. Given a number of sequences belonging to the same class, i.e. in
biological terms believed to belong to the same family, fold, or are otherwise
somehow related, alignments are constructed aligning all sequences in one sin-
gle alignment, a so-called profile. A common approach for the construction of a
multiple alignment is a three step approach: First, all pairwise alignments are
constructed. Second, using this information as starting point a phylogenetic tree
is created as guiding tree. Third, using this tree, sequences are joined consecu-
tively into one single alignment according to their similarity. This approach is
known as the neighbour joining approach [23].

Example 2. Reconsider our natural language example from the beginning. Table 1
shows the global alignment of all five example sentences used by Barzilay and
Lee [1] (adapted appropriately). As similarity measure we used the identity func-
tion, i.e., for instance S(balloon, balloon) = 1 but S(wednesday, sunday) = 0.
The underlined sub-structures show the conserved regions computed by a
propositional, global sequence alignment with arbitrarily chosen gap costs: gap
opening cost 1.5, gap extention cost 0.5, and padding cost 0.25.

A good overview of alignment algorithms, including construction of multiple
alignments and the generation of phylogenetic trees, can be found in [6].

3 Alignment of Sequences of Relational Objects

The alignment algorithms discussed in the previous section assume a given sim-
ilarity measure Si,j . Typically, this similarity measure is flat because the consid-
ered sequences consist of flat symbols. For instance the similarity measure used
in Example 2 was simply the identity function. Many sequences occurring in
real-world problems such as in computational biology, planning, user modeling,
and natural language processing, however, exhibit internal structure. The ele-
ments of such sequences can elegantly be represented as objects in a relational
logic (see e.g. [16] for an introduction to logic).
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Table 1. Five sentences adapted from the example given by Barzilay and Lee [1].
Underlined words show the conserved regions (exact matches across all sequences)
computed by a propositional sequence alignment using gap opening cost 1.5, gap ex-
tention cost 0.5, and padding cost 0.25. The bold parts denote the conserved regions of
the corresponding relational sequence alignment using the same gap costs. The italic
words show lgg conserved regions, i.e., the lgg of all atoms at a position exists.

1. A purple latex balloon blew himself up in a southern city Wednesday,
bursting two other balloons and deforming 27.

2. A latex balloon blew himself up in the area of Freiburg, on Sunday,
bursting itself and disfiguring seven balloons.

3. A latex balloon blew himself up in the coastal resort of Cuxhaven, burst-
ing three other balloons and deforming dozens more.

4. A purple latex balloon blew himself up in a garden cafe on Saturday,
bursting 10 balloons and deforming 54.

5. A latex balloon blew himself up in the centre of Berlin on Sunday, burst-
ing three balloons as well as itself and disfiguring 40.

Example 3. Recall the extended version of the balloon sentence in Example 1
dt(a), jj(purple), nn(latex), nn(balloon), vbd(blew), . . . representing deter-
miners dt(Word), nouns nn(Word) etc. The secondary structure of the Ribo-
somal protein L4 can be represented as st(null, short), he(h(right, alpha),
long), st(plus, short), . . . representing helices and strands of certain types,
orientations, and lengths, he(HelixType,Length) respectively st(Orientation,
Length).

The symbols dt, nn, . . ., st, null, short, he, h, . . . have an associated ar-
ity, i.e., number of arguments such as st/2, he/2, and h/2 having arity 2,
dt/1 and nn/1 having arity 1, and plus/0, 1/0, having arity 0. A structured
term is a placeholder or a symbol followed by its arguments in brackets such as
nn(balloon), medium, h(right, X), and he(h(right, X), medium). A ground term
is one that does not contain any variables such as nn(balloon), st(null, short),
he(h(right, alpha), long), . . ..

Relational sequence alignment simply denotes the alignment of sequences of
such structured terms. More formally, the relational alignment problem can be
defined as follows.

Definition 1 (Relational Sequence Alignment Problem). Let x = 〈xi〉ni=1,
n > 0, and y = 〈yi〉mi=1, m > 0, be two sequences of logical objects and let Si,j

be a similarity measure indicating the score of aligning object xi with object yj.
Then, the global alignment problem seeks to find the match with highest score of
both sequences in their entirety. The local alignment problem seeks to find the
subsequence match with highest score.

One attractive way to solve this problem is to use a standard alignment algorithm
but to replace the flat similarity measure Si,j in Eq. (1) by a structured one.
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In this paper, we propose to use one of the many distance measures devel-
oped within Inductive Logic Programming [18]. As an example, consider one of
the most basic measures proposed by Nienhuys-Cheng [20] 1. It treats ground
structured terms as hierarchies, where the top structure is most important and
the deeper, nested sub-structures are less important. Let S denote the set of all
symbols, then Nienhuys-Cheng distance d is inductively defined as follows:

∀c/0 ∈ S : d(c, c) = 0
∀p/n, q/m ∈ S : p/n �= q/m : d(p(t1, . . . , tn), q(s1, . . . , sm)) = 1
∀p/n ∈ S : d(p(t1, . . . , tn), p(s1, . . . , sn)) = 1

2n

∑n
i=1 d(ti, si)

For different symbols the distance is one; however, when the symbols are the
same, the distance linearly decreases with the number of arguments that have
different values, and is at most 0.5. The intuition is that longer tuples are more
error-prone and that multiple errors in the same tuple are less likely.

Example 4. At this point the reader may verify that

d(nnp(wednesday), nnp(wednesday)) = 1/(2 · 0) · (1) = 0.0
d(nnp(wednesday), nnp(sunday)) = 1/(2 · 1) · (0) = 0.5

d(dt(a), dt(the)) = 1.0

so that it smooths the dichotomic identity function of the propositional case.

To solve the corresponding relational alignment problem, we simply set Si,j =
1− d(xi, yi) in Equation (1).

Example 5. Continuing with our Balloon example but now employing the rela-
tional representation based on Brill’s rule-based part of speech tagger, cf. [2], the
bold parts in Table 1 show the conserved regions of the corresponding relational
sequence alignment. We used the same gap costs as before but replaced the iden-
tity function by the Nienhuys-Cheng measure.. As one can see, the consensus
regions of the propositional sequence alignment are proper sub-regions of the
relational one.

3.1 Information Content

Now that we have introduced relational sequence alignments, we will investi-
gate how informative they are. To this aim, we will introduce the concept of
information content of relational sequence alignments. The information content
is a significant concept as it allows to evaluate alignments of and to find com-
mon motifs in relational sequences. Moreover, it allows (see next Section) one to
represented alignments graphically by so-called relational sequence logos.

1 For sequences of more complex logical objects such as interpretations and queries, a
different, appropriate similarity function has to be chosen. We refer to Jan Ramon’s
PhD Thesis [22] for a nice review of them.
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Fig. 1. Information content (IC) for the balloon example. The graph shows both the
IC at each position (circle) and the cumulative IC (triangle) for the relational repre-
sentation (solid, filled) and for the flat representation (dotted, unfilled).

Following Gorodkin et al. [7], the information content Ii of position i of a
relational sequence alignment is

Ii =
∑

k∈G
Iik =

∑

k∈G
qik log2

(
qik

pk

)

,

where G is the Herbrand base over the language of the aligned sequences includ-
ing gaps (denoted as ’−’) and qik is the fraction of ground atoms k at position i.
When k is not a gap, we interpret pk as the a priori distribution of the ground
atom. Following Gorodkin et al., we set p− = 1.0, since then qi− log2(qi−/p−)
is zero for qi− equal to zero or one. For the work reported here, we set pk = 1/
(|G| − 1) when k �= −. The intuition is as follows:

if Iik is negative, we observe fewer copies of ground atom k at position i
than expected, and vice versa if Iik is positive, we observe more of it.

Example 6. Figure 1 shows the (cumulative) information content for our run-
ning balloon example. As prior we use the empirical frequencies over all five
sentences. As one can see, both the relational and the flat representation agree
on the information content for ’A [...] latex balloon blew himself up in [...]’. They,
however, disagree on the rest. Actually, the relational representation puts more
information into the positions 14–18 whereas the flat representation put more
information into the positions 19–23.

The total information content becomes I =
∑

i Ii and can be used to evaluate
relational sequence alignments.

Example 7. In the balloon example, the relational representation provides more
information than the flat one, 80.7 vs. 79.8.

So far, we have defined the information content at the most informative level,
namely the level of ground atoms. Relational sequences exhibit a rich internal
structure and, due to that, multiple abstraction levels can be explored: variables
allow to make abstraction of specific symbols. To compute the information con-
tent at a higher abstraction levels, i.e., of an atom a replacing all covered ground
atoms k at position i, we view qia (resp. pa) as the sum of qik (resp. pk) of the
ground atoms k covered by a.
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Fig. 2. Sequence logos (positions 7 – 17) for the balloon example (from bottom to top:
flat , ground, abstract, and relational)

4 Relational Sequence Logos

Reconsider the alignment in Table 1. It consists of several lines of textual in-
formation. This makes it difficult – if not impossible – to read off information
such as the general consensus of the sequences, the order of predominance of
the symbols at every position, their relative frequencies, the amount of informa-
tion present at every position, and significant locations within the sequences. In
contrast, the corresponding sequence logo as shown in Figure 2 concentrates all
of this into a single graphical representation. In other words, ’a logo says more
than a thousand lines alignment’.

Each position i in a relational sequence logo is represented by a stack consisting
of the atoms at position i in the corresponding alignment. The height of the
stack at position i indicates the information content Ii available. The height
hik of each atom k at position i is proportional to its frequency relative to the
expected frequency, i.e.,

hik = αi ·
(

qik

pk

)

· Ii ,

where αi is a normalization constant. The atoms are sorted according to their
heights. If Iik is negative, the atom is shown upside-down.

Sequence logos at lower abstraction levels can become quite complex. Rela-
tional abstraction can be used to straighten them up. Reconsider Fig. 2. It also
shows the logo at the highest abstraction level, where we considered as sym-
bols the least general generalization of all ground atoms over the same predicate
at each position in the alignment only. Because the prior probabilities change
dramatically, the abstract logo looks totally different from the ground one. It
actually highlights the determiner at position 9 and the propositional phrase
at positions 14 and 15. Both views provide relevant information. Relational lo-
gos now combine both by putting at each position the individual stack items
together and sort them in ascending order of heights.
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To summarize, relational sequence logos illustrate that while relational align-
ments can be quite complex, they exhibit rich internal structures which, if ex-
ploited, can lead to new insights not present in flat alignments.

5 Experiments

Our intention here is to investigate to which extent relational sequence alignment
is useful to analyze real-world data. More precisely, we investigated the following
questions:

(Q1) Can Real’s alignments be more informative than propositional ones?
(Q2) If so, can there be a gain in applications over propositional alignments?
(Q3) Can Real easily be applied across different domains?
(Q4) Is Real competitive with advanced ILP approaches?

To this aim, we implemented Real in Python and Prolog and conducted a
number of experiments on real-world data sets. In the following we will present
their results.

5.1 (Q1) Alignment of Protein Sequences

To answer (Q1), we considered as real-world data set the five most populated
folds in the SCOP class Alpha and beta proteins (a/b), i.e., folds c.1, TIM
beta/alpha-barrel, c.2, NAD(P)-binding Rossmann-fold domains, c.23,
Flavodoxin-like, c.37, P-loop containing nucleotide triphosphate hydrolases, and
c.55. Ribonuclease H-like motif. The examples are sequences of secondary struc-
ture elements of proteins which are similar in their three dimensional shape, but
in general do not share a common ancestor (i.e. are not homologous). In total
there are 2086 sequence distributed over the folds as follows: (c.1: 721), (c.2:
360), (c.23, 274), (c.37, 441), (c.55,290). The data set was generated using the
ASTRAL database for the SCOP version 1.632.

We actually considered the subset of proteins which do not share more than
40 per cent amino acid sequence identity (cut 40). Overall, there are 522 example
sequences (c.1: 182, c.2: 100, c.23: 66, c.37: 121, c.55: 53). We aligned sequences
from one fold into a multiple alignment. Here we used the global alignment
algorithm Needleman-Wunsch with affine gap penalties. The question of finding
the appropriate gap costs in computational Biology is commonly answered by a
trial and error approach. Here, we have solely concentrated on global alignments
with affine gap costs using low padding costs. We have arbitrarily chosen the
following gap costs: opening 1.5, extentsion 0.5, and padding 0.25.

Overall, Real yield a larger information content than the propositional
approach (treating each ground atom as a different symbol). More precisely,
the information contents for all folds were (relational/flat): c.1 (6.14/5.01), c.2
(7.66/7.54), c.23 (6.65/5.34), c.37 (−0.12/−0.62), c.55 (1.05/−0.24). Making
gaps less expensive even increased the difference in information content. This
affirmatively answers question Q1.
2 http://astral.berkeley.edu/scopseq-1.63.html



Relational Sequence Alignments and Logos 299

Fold: SH3 (1 002 032)

Scop: barrel, partly opened; np 1/4 4; Sp 1/4 8; meander; the last strand
is interrupted by a turn of 310 helix

Fold: Barrel-sandwich hybrid (1 002 079)

Scop: sandwich of half-barrel-shaped b-sheets

Fig. 3. Comparison of Real’s logos to SCOP descriptions for several folds. The lo-
gos are compared to the expert-like descriptions of those folds taken from the Scop

database (caption). Bold words denote matches.

5.2 (Q2, Q3) Information Extraction

5.3 (Q4) Protein Fold Classification and Description

In general, however, more informative alignments can also come at an expense:
even apparent unrelated sequences get higher similarity scores. For instance, in
our protein sequence data set, we found sequences from different folds, where
the relational alignment score is 4.75 times higher than the flat one. This can be
a drawback in discriminative machine learning tasks. To validate this, we per-
formed a 10-fold cross-validated nearest neighbour classification (k=7) on the
cut 40 protein data set. This yielded 74.33% for the flat and 68.01% for the re-
lational representation. On the full protein data sets, the predicative accuracies
increase to 93.86% respectively 90.17%. The reason for the increase are obvi-
ously in the missing of close homologues in the cut 40 subset. Although, the
experimental results favour the flat representation, the performances themselves
are very good. They are comparable to more sophisticated statistical relational
learning results on similar data: LoHHMs 74.0% [12], Fisher kernels 84% [13],
CRFs 92.96% [8]. This tends to affirmatively answer Q4.

To further investigate (Q4) empirically, we investigated to which extend
Real’s logos can be used to describe structural principles underlying Scop

folds. Understanding how proteins fold in nature, i.e., their three-dimensional
shapre and structure is an important research question because the biological
functions of proteins depend on the way they fold. We considered the Scop pro-
tein data set used by Cotes et al. [3]. We computed the logos for those protein
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Fold: Long a-hairpin (1 001 002)

Scop:two helices; antiparallel hairpin, left-handed twist

Fold: Immunoglobulin (1 002 001)

Scop: sandwich; seven strands in two sheets; greek-key; some members
of the fold have additional strands

Fig. 4. Comparison of Real’s logos to SCOP descriptions for several folds. The lo-
gos are compared to the expert-like descriptions of those folds taken from the Scop

database (caption). Bold words denote matches.

folds for which Cotes et al. [3] provide the ILP rules computed using Progol.
The logos together with a comparison to Scop’s expert-like descriptions of the
folds are shown in Figures 3–6.

The relational logos match surprisingly well the fold descriptions3: only the
parts of the Scop descriptions, which can not be expressed using our simple

Fold: Prealbumin-like (1 002 003)

Scop: sandwich; seven strands in two sheets, greek-key; variations: some
members have additional one or two strands to common fold

Fig. 5. Comparison of Real’s logo to SCOP description for the Prealbumin-like fold.
The logo is compared to the expert-like descriptions of this folds taken from the Scop

database (caption). Bold words denote matches.

3 Using the flat representation, we were not able to discover the Scop descriptions.
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protein representation, are missing and the relevant positions are highlighted
due to relational abstraction. According to Cotes et al. [3], the logos can be
considered to be meaningful to protein experts and, hence, a success in terms
of the application domain. This clearly affirmatively answers (Q4). In contrast
to Cotes et al.’s ILP rules found using Progol, our discovered descriptions are
less detailed and discriminative. This, however, is not surprising given the small
amount of domain knowledge we used (particularly compared to Cotes et al.’s
Progol approach).

6 Conclusions

We presented Real, the first – to the best of our knowledge – alignment approach
for relational sequences, i.e., sequences of logical objects. The experimental re-
sults clearly show that relational sequences alignments reveal useful information
in practice across different domains and that they can indeed be more infor-
mative. Real’s alignments and logos are objective and reveal information not
present in flat alignments such as the structural principles underlying protein
folds in a way meaningful to experts.

Real suggests a very interesting line of future research, namely to address the
alignment of more complex logical objects such as interpretations, i.e., graphs.
This has interesting applications e.g. in activity recognition, music mining, and
plan recognition. Furthermore, extending CRF-based alignment methods [21,8]
to the relational case could be explored. Here, Real should serve as a baseline.
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Abstract. Concept Formation is a unsupervised learning task usually
decomposed into the two subtasks of clustering and characterization.
This paper presents a novel approach to Concept Formation in First Or-
der Logic (FOL) which adopts a pattern-based approach to clustering
and a bias-based approach to characterization. The resulting method ex-
tends therefore the levelwise search method for Frequent Pattern Discov-
ery. The FOL fragment chosen is AL-log, a hybrid language that merges
the description logic ALC and the clausal logic Datalog and turns out
to be suitable for applications in the context of Ontology Refinement. In-
deed the method returns a taxonomy rooted into the concept that occurs
in an existing taxonomic ontology and needs to be refined in the light
of new knowledge coming from an external data source. Experimental
results have been obtained on an ALC ontology enriched with Datalog

data extracted from the on-line CIA World Fact Book.

1 Introduction

Concept Formation is about the incremental and unsupervised acquisition of
conceptual knowledge. In their review of human concepts and concept formation,
Medin and Smith [21] summarized three views: the classical, probabilistic and
exemplar views. The classical view holds that all instances of a concept share
common properties that are necessary and sufficient conditions for defining the
concept. The probabilistic view argues that concepts are represented in terms
of properties that are only characteristic or probable of class members. Mem-
bership in a category can thus be graded rather than all-or-one. The exemplar
view claims that categories may be represented by their individual exemplars,
and that assignment of a new instance to a category is determined by whether
the instance is sufficiently similar to one or more of the category’s known ex-
emplar. One of the functions a concept serves is simple categorization [24]: the
means by which people decide whether or not something belongs to a simple
class. The defining properties in the classic view of concepts are most effective
in performing simple categorization. However, to obtain the defining proper-
ties directly has been proved to be very difficult [21]. As a subject of interest
in AI, Concept Formation indicates a task of Machine Learning that refers to
the acquisition of conceptual hierarchies in which each concept has a flexible,
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non-logical definition and in which learning occurs incrementally and without
supervision [11]. More precisely, it is to take a large number of unlabeled train-
ing instances; to find clusterings that group those instances in categories; to find
an intensional definition for each category that summarized its instances; and
to find a hierarchical organization for those categories [6]. Note that Machine
Learning researchers focus on the probabilistic and exemplar concepts. Concept
Formation stems from Conceptual Clustering [22]. The two differ substantially
in the methods: The latter usually applies bottom-up batch algorithms whereas
the former prefers top-down incremental ones. Yet the methods are similar in
the scope of induction, i.e. prediction, as opposite to (Statistical) Clustering [10]
whose goal is to describe a data set.

Close to (Statistical) Clustering as it aims to description, Frequent Pattern
Discovery is about the discovery of regularities in a data set [20]. A frequent
pattern is an intensional description, expressed in a language L, of a subset of
a given data set r whose cardinality exceeds a user-defined threshold (minimum
support). Note that patterns can refer to multiple levels of description granularity
(multi-grained patterns) [9]. Here r typically encompasses a taxonomy T . More
precisely, the problem of frequent pattern discovery at l levels of description
granularity, 1 ≤ l ≤ maxG, is to find the set F of all the frequent patterns
expressible in a multi-grained language L = {Ll}1≤l≤maxG and evaluated against
r w.r.t. a set {minsupl}1≤l≤maxG of minimum support thresholds by means of
the evaluation function supp. In this case, P ∈ Ll with support s is frequent in
r if (i) s ≥ minsupl and (ii) all ancestors of P w.r.t. T are frequent in r. The
blueprint of most algorithms for frequent pattern discovery is the levelwise search
method [20] which searches the space (L,�) of patterns organized according to
a generality order � in a breadth-first manner, starting from the most general
pattern in L and alternating candidate generation and candidate evaluation
phases. The underlying assumption is that � is a quasi-order monotonic w.r.t.
supp. Note that the method proposed in [20] is also at the basis of algorithms
for the variant of the task defined in [9].

In this paper we identify that missing link between Frequent Pattern Discov-
ery and Concept Formation which allows us to formulate a solution approach
for Concept Formation that exploits the results obtained for Frequent Pattern
Discovery. The application context for our study is Ontology Learning [18] for
the case of taxonomic ontologies [7]. In particular, we consider the Concept
Formation problem of finding subconcepts of a known concept Cref , called ref-
erence concept, belonging to an existing taxonomic ontology Σ in the light of
new knowledge coming from a relational data source Π . We call this problem
Concept Refinement. Also we assume that a concept C consists of two parts:
an intension int(C) and an extension ext(C). The former is an expression belong-
ing to a logical language L whereas the latter is a set of objects that satisfy the
former. Then, the goal of Concept Refinement is to find a taxonomy G of con-
cepts Ci such that (i) int(Ci) ∈ L and (ii) ext(Ci) ⊂ ext(Cref ). Note that Cref is
among both the concepts defined in Σ and the symbols of L. Furthermore ext(Ci)
relies on a notion of satisfiability of int(Ci) w.r.t. B = Σ ∪ Π . The taxonomy
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Table 1. Syntax and semantics of ALC

bottom (resp. top) concept ⊥ (resp. �) ∅ (resp. ΔI)

atomic concept A AI ⊆ ΔI

role R RI ⊆ ΔI × ΔI

individual a aI ∈ ΔI

concept negation ¬C ΔI \ CI

concept conjunction C � D CI ∩ DI

concept disjunction C � D CI ∪ DI

value restriction ∀R.C {x ∈ ΔI | ∀y (x, y) ∈ RI → y ∈ CI}
existential restriction ∃R.C {x ∈ ΔI | ∃y (x, y) ∈ RI ∧ y ∈ CI}

equivalence axiom C ≡ D CI = DI

subsumption axiom C � D CI ⊆ DI

concept assertion a : C aI ∈ CI

role assertion 〈a, b〉 : R (aI , bI) ∈ RI

G is structured according to the subset relation between concept extensions. A
Knowledge Representation and Reasoning (KR&R) framework suitable for our
purposes is the one offered by the hybrid KR&R system AL-log [3] because it
provides a unified framework for dealing with both the taxonomic ontology and
the relational data source. Therefore, as a solution approach to the Concept Re-
finement problem, we propose to extend our previous work on Frequent Pattern
Discovery [15] because it adapts [20,9] to the KR&R framework of AL-log. A
preliminary study of the problem is reported in [12,14].

The paper is structured as follows. Section 2 clarifies how concepts are defined
with AL-log in our approach to the Concept Formation problem in hand. Sec-
tion 3 illustrates our approach to the problem. Section 4 discusses experimental
results obtained on a taxonomic ontology. Section 5 concludes with final remarks
and directions of future work.

2 Representing Concepts

The KR&R framework for conceptual knowledge is the one offered by AL-log
[3] which allows for the specification of both structural and relational data: the
former is based on the description logic ALC [25], the latter on Datalog [2].
The integration of the two forms of representation is provided by the so-called
constrained Datalog clause, i.e. a Datalog clause with variables possibly con-
strained by concepts expressed in ALC.

Input concepts are the concepts occurring in the taxonomic ontology Σ con-
sidered as input to the problem and represented with ALC. In ALC knowledge
is in terms of classes (concepts), binary relations between classes (roles), and
instances (individuals). Complex concepts can be defined from atomic concepts
and roles by means of constructors (see Table 1). Also Σ can state both is-a re-
lations between concepts (axioms) and instance-of relations between individuals
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(resp. couples of individuals) and concepts (resp. roles) (assertions). Concepts
and axioms form the so-called TBox T of Σ whereas individuals and assertions
form the so-called ABox A of Σ. An interpretation I = (ΔI , ·I) for Σ consists of
a domain ΔI and a mapping function ·I . In particular, individuals are mapped
to elements of ΔI such that aI �= bI if a �= b (unique names assumption). If
O ⊆ ΔI and ∀a ∈ O : aI = a, I is called O-interpretation. The main reason-
ing task for Σ is the consistency check. This test is performed with a tableau
calculus that starts with the tableau branch S = T ∪ A and adds assertions to
S by means of propagation rules until either a contradiction is generated or an
interpretation satisfying S can be easily obtained from it.

Example 1. Throughout this paper, we will refer to ALC ontology ΣCIA con-
cerning countries, ethnic groups, languages, and religions of the world, and built
according to Wikipedia1 taxonomies. For instance, the expression

MiddleEastCountry≡ AsianCountry$ ∃Hosts.MiddleEasternEthnicGroup.

is an equivance axiom that defines the concept MiddleEastCountry as an Asian
country which hosts at least one Middle Eastern ethnic group.

Output concepts are the concepts automatically formed out of the input ones.
The language L contains expressions, called O-queries, relating individuals of
Cref to individuals of other concepts (task-relevant concepts). These concepts
also must occur in Σ. An O-query is a constrained Datalog clause of the form

Q = q(X)← α1, . . . , αm&X : Cref , γ2, . . . , γn,

where X is the distinguished variable and the remaining variables occurring
in the body of Q are the existential variables. Note that αj , 1 ≤ j ≤ m, is
a Datalog literal whereas γk, 1 ≤ k ≤ n, is an assertion that constrains a
variable already appearing in any of the αj ’s to vary in the range of individuals
of a concept defined in Σ. Also O-queries are compliant with the properties of
linkedness and connectedness [23] and the bias of Object Identity (OI)2 [26]. The
O-query

Qt = q(X)← &X : Cref

is called trivial for L because it only contains the constraint for X . Furthermore
the language L is multi-grained, i.e. it contains expressions at multiple levels
of description granularity. Indeed it is implicitly defined by a declarative bias
specification which consists of a finite alphabet A of Datalog predicate names
and finite alphabets Γ l (one for each level l of description granularity) of ALC
concept names. Note that αi’s are taken from A and γj ’s are taken from Γ l. We
impose L to be finite by specifying some bounds, mainly maxD for the maximum
depth of search and maxG for the maximum level of granularity.
1 http://www.wikipedia.org/
2 The OI bias can be considered as an extension of the unique names assumption

from the semantics of ALC to the syntax of AL-log. It boils down to the use of
substitutions whose bindings avoid the identification of terms.
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Example 2. We want to refine the concept MiddleEastCountry belonging to
ΣCIA in the light of the new knowledge coming from the external data source ΠCIA

consisting of Datalog facts3 extracted from the on-line 1996 CIA World Fact
Book4. More precisely we want to describe Middle East countries (individuals of
the reference concept) with respect to the religions believed and the languages
spoken (individuals of the task-relevant concepts) at three levels of granularity
(maxG = 3). To this aim we define LCIA as the set of O-queries with Cref =
MiddleEastCountry that can be generated from the alphabet

A= {believes/2, speaks/2}

of Datalog binary predicate names, and the alphabets

Γ 1= {Language, Religion}
Γ 2= {IndoEuropeanLanguage, . . . , MonotheisticReligion, . . .}
Γ 3= {IndoIranianLanguage, . . . , MuslimReligion, . . .}

of ALC concept names for 1 ≤ l ≤ 3, up to maxD = 5. Note that the names in
A are taken from ΠCIA whereas the names in Γ l’s are taken from ΣCIA. Examples
of O-queries in LCIA are:

Qt= q(X) ← & X:MiddleEastCountry
Q1= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:Language
Q2= q(X) ← speaks(X,Y) & X:MiddleEastCountry, Y:IndoEuropeanLanguage
Q3= q(X) ← believes(X,Y)& X:MiddleEastCountry, Y:MuslimReligion

where Qt is the trivial O-query for LCIA, Q1 ∈ L1
CIA, Q2 ∈ L2

CIA, and Q3 ∈ L3
CIA.

Thus, an output concept C has an O-query Q as intension and the set answerset
(Q,B) of correct answers to Q w.r.t. B as extension. Note that answerset(Q,B)
contains the substitutions θi’s for the distinguished variable of Q such that there
exists a correct answer to body(Q)θi w.r.t. B. In other words, the extension is
the set of individuals of Cref satisfying the intension.

Example 3. The concept having Q1 as intension has extension answerset
(Q1,BCIA) = {’ARM’, ’IR’, ’SA’, ’UAE’}. In particular, the substitution θ =
{X/’ARM’} is a correct answer to Q1 w.r.t. BCIA because there exists a correct an-
swer σ={Y/ ’Armenian’} to body(Q1)θ w.r.t. BCIA. Note that BCIA=ΣCIA∪ΠCIA.

Output concepts are organized into a taxonomy G rooted in Cref and structured
as a Directed Acyclic Graph (DAG) according to the subset relation between
concept extensions. Note that one such ordering is in line with the set-theoretic
semantics of the subsumption relation in ontology languages (see, e.g., the se-
mantics of ' in ALC).

3 http://www.dbis.informatik.uni-goettingen.de/Mondial/
mondial-rel-facts.flp

4 http://www.odci.gov/cia/publications/factbook/

http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.flp
http://www.dbis.informatik.uni-goettingen.de/Mondial/mondial-rel-facts.flp
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3 Forming Concepts Out of Frequent Patterns

According to the commonly accepted formulation of the task [11,6], Concept
Formation can be decomposed in two sub-tasks:

1. clustering
2. characterization

The former consists in using internalised heuristics to organize the observations
into categories whereas the latter consists in determining a concept (that is, an
intensional description) for each extensionally defined subset discovered by clus-
tering. We propose a pattern-based approach for the former (see Section 3.1)
and a bias-based approach for the latter (see Section 3.2). Prior formulations
of the two approaches are reported in [12] and [14], respectively.

3.1 Pattern-Based Clustering

A frequent pattern highlights a regularity in r, therefore it can be considered
as the clue of a data cluster. Note that clusters are concepts partially specified
(called emerging concepts): only the extension is known. We propose to detect
emerging concepts by applying the method of [15] for frequent pattern discovery
at l, 1 ≤ l ≤ maxG, levels of description granularity and k, 1 ≤ k ≤ maxD,
levels of search depth. It adapts [20,9] to the KR&R framework of AL-log as
follows. For L being a multi-grained language of O-queries, we need to define
first supp, then �. The support of an O-query Q ∈ L w.r.t. an AL-log knowledge
base B is defined as

supp(Q,B) =| answerset(Q,B) | / | answerset(Qt,B) |

and supplies the percentage of individuals of Cref that satisfy Q.

Example 4. The value supp(Q1,BCIA) = 26.6% is obtained from | answerset
(Q1,BCIA) |= 4 and | answerset(Qt,BCIA) |= 15 =| MiddleEastCountry |.

Patterns are ordered according to B-subsumption [15] which can be tested by
resorting to constrained SLD-resolution: Given two O-queries H1, H2 ∈ L, B an
AL-log knowledge base, and σ a Skolem substitution for H2 w.r.t. {H1} ∪ B,
we say that H1 B-subsumes H2, denoted as H1 �B H2, iff there exists a substi-
tution θ for H1 such that (i) head(H1)θ = head(H2) and (ii) B ∪ body(H2)σ (
body(H1)θσ where body(H1)θσ is ground. It has been proved that �B is a quasi-
order that fulfills the condition of monotonicity w.r.t. supp [15].

Example 5. It can be checked that Q1 �B Q2 by choosing σ={X/a, Y/b} as a
Skolem substitution for Q2 w.r.t. BCIA∪{Q1} and θ = ∅ as a substitution for Q1.
Similarly it can be proved that Q2 ��B Q1. Furthermore, it can be easily verified
that Q3 B-subsumes the following O-query in L3

CIA

Q4= q(A) ← believes(A,B), believes(A,C)&
A:MiddleEastCountry, B:MuslimReligion
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by choosing σ={A/a, B/b, C/c} as a Skolem substitution for Q4 w.r.t. BCIA∪{Q3}
and θ={X/A, Y/B} as a substitution for Q3. Note that Q4 ��B Q3 under the OI
bias. Indeed this bias does not admit the substitution {A/X, B/Y, C/Y} for Q4

which would make it possible to verify conditions (i) and (ii) of the �B test.

3.2 Bias-Based Characterization

Since several frequent patterns can have the same set of supporting individuals,
turning clusters into concepts is crucial in our approach. The choice criterion
for concept intensions has been obtained by combining two orthogonal biases: a
language bias and a search bias [23]. The former allows the user to define con-
ditions on the form of O-queries to be accepted as concept intensions. E.g., it
is possible to state which is the minimum level of description granularity (para-
meter minG) and whether (all) the variables must be ontologically constrained
or not. The latter allows the user to define a preference criterion based on B-
subsumption. More precisely, it is possible to state whether the most general
description (m.g.d.) or the most specific description (m.s.d.) w.r.t. �B has to be
preferrred. Since �B is not a total order, it can happen that two patterns P and
Q, belonging to the same language L, can not be compared w.r.t. �B. In this
case, the m.g.d. (resp. m.s.d) of P and Q is the union (resp. conjunction) of P
and Q.

Example 6. The patterns

q(A) ← speaks(A,B), believes(A,C) & A:MiddleEastCountry, B:ArabicLanguage

and

q(A) ← believes(A,B), speaks(A,C) & A:MiddleEastCountry, B:MuslimReligion

have the same answer set {ARM, IR} but are incomparable w.r.t. �B. Their m.g.d.
is the union of the two:

q(A) ← speaks(A,B), believes(A,C) & A:MiddleEastCountry, B:ArabicLanguage
q(A) ← believes(A,B), speaks(A,C) & A:MiddleEastCountry, B:MuslimReligion

Their m.s.d. is the conjunction of the two:

q(A) ← believes(A,B), speaks(A,C), speaks(A,D), believes(A,E) &
A:MiddleEastCountry, B:MuslimReligion, C:ArabicLanguage

The extension of the subsequent concept will be {ARM, IR}.

The two biases are combined as follows. For each frequent pattern P ∈ L that
fulfills the language bias specification, the procedure for building the DAG G
from the set F = {F l

k | 1 ≤ l ≤ maxG, 1 ≤ k ≤ maxD} checks whether a
concept C with ext(C) = answerset(P ) already exists in G. If one such concept
is not retrieved, a new node C with int(C) = P and ext(C) = answerset(P ) is
added to G. Note that the insertion of a node can imply the reorganization of the
DAG to keep it compliant with the subset relation on extents. If the node already
occurs in G, its intension is updated according to the search bias specification.
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4 Experimental Results

In order to test the approach presented in Section 3 we have extended the system
AL-QuIn [13] with a module for post-processing frequent patterns into concepts.
The goal of the experiments is to provide an empirical evidence of the orthog-
onality of the two biases and of the potential of their combination as choice
criterion.

In the next subsections we report the experimental results obtained for the
problem introduced in Example 2 by setting the parameters for the frequent
pattern discovery phase as follows: maxD = 5, maxG = 3, minsup1 = 20%,
minsup2 = 13%, and minsup3 = 10%. Thus each experiment starts from the
same set F of 53 frequent patterns out of 99 candidate patterns. Also all the
experiments require the descriptions to have all the variables ontologically con-
strained but vary as to the user preferences for the minimum level of description
granularity and the search bias. They are grouped according to the value assigned
to minG.

4.1 Experiments with minG = 2

The first two experiments both require the descriptions to have all the variables
ontologically constrained by concepts from the second granularity level on. When
the m.g.d. criterion is adopted, the procedure of taxonomy building returns the
following twelve concepts:

C-1111 ∈ F1
1

q(A) ← A:MiddleEastCountry
{ARM, BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE, YE}

C-5233 ∈ F2
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:MonotheisticReligion
{ARM, BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE}

C-2233 ∈ F2
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:AfroAsiaticLanguage
{IR, SA, YE}

C-3233 ∈ F2
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:IndoEuropeanLanguage
{ARM, IR}

C-8256 ∈ F2
5

q(A) ← speaks(A,B), believes(A,C) &
A:MiddleEastCountry, B:AfroAsiaticLanguage, C:MonotheisticReligion

{IR, SA}

C-6256 ∈ F2
5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:MonotheisticReligion, C:MonotheisticReligion

{BRN, IR, IRQ, IL, JOR, RL, SYR}



Frequent Pattern Discovery and Concept Formation 313

Fig. 1. Taxonomy G′
CIA for minG = 2

C-2333 ∈ F3
3

q(A) ← believes(A,’Druze’) & A:MiddleEastCountry
{IL, SYR}

C-3333 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:JewishReligion
{IR, IL, SYR}

C-4333 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:ChristianReligion
{ARM, IR, IRQ, IL, JOR, RL, SYR}

C-5333 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:MuslimReligion
{BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE}

C-14356 ∈ F3
5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:ChristianReligion, C:MuslimReligion

{IR, IRQ, IL, JOR, RL, SYR}

C-5356 ∈ F3
5
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q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:MuslimReligion, C:MuslimReligion

{BRN, IR, SYR}

organized in the taxonomy G′
CIA. They are numbered according to the chrono-

logical order of insertion in G′
CIA and annotated with information of the gener-

ation step. Note that C-14356 is a child of both C-4333 and C-6256 because
ext(C-4333) and ext(C-6256) are both minimal supersets of ext(C-14356).

From a qualitative point of view, concepts C-22335 and C-5333 well charac-
terize Middle East countries. Armenia (ARM), as opposite to Iran (IR), does not
fall in these concepts. It rather belongs to the weaker characterizations C-3233
and C-4333. This proves that our procedure performs a ’sensible’ clustering.
Indeed Armenia is a well-known borderline case for the geo-political concept
of Middle East, though the Armenian is usually listed among Middle Eastern
ethnic groups. Modern experts tend nowadays to consider it as part of Europe,
therefore out of Middle East. But in 1996 the on-line CIA World Fact Book still
considered Armenia as part of Asia.

When the m.s.d. criterion is adopted, the intensions for the concepts C-2233,
C-3233, C-8256, C-2333 and C-3333 change as follows:

C-2233 ∈ F2
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:ArabicLanguage
{IR, SA, YE}

C-3233 ∈ F2
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:IndoIranianLanguage
{ARM, IR}

C-8256 ∈ F2
5

q(A) ← speaks(A,B), believes(A,C) &
A:MiddleEastCountry, B:ArabicLanguage, C:MuslimReligion

{IR, SA}

C-2333 ∈ F3
3

q(A) ← believes(A,’Druze’), believes(A,B),
believes(A,C), believes(A,D) &
A:MiddleEastCountry, B:JewishReligion,
C:ChristianReligion, D:MuslimReligion

{IL, SYR}

C-3333 ∈ F3
3

q(A) ← believes(A,B), believes(A,C), believes(A,D) &
A:MiddleEastCountry, B:JewishReligion,
C:ChristianReligion, D:MuslimReligion

{IR, IL, SYR}

In particular C-2333 and C-3333 look quite overfitted to data. Yet overfitting
allows us to realize that what distinguishes Israel (IL) and Syria (SYR) from
5 C-2233 is less populated than expected because BCIA does not provide facts on the

languages spoken for all countries.
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Fig. 2. Taxonomy G′′
CIA for minG = 3

Iran is just the presence of Druze people. Note that the clusters do not change
because the search bias only affects the characterization step.

4.2 Experiments with minG = 3

The other two experiments further restrict the conditions of the language bias
specification. Here only descriptions with variables constrained by concepts of
granularity from the third level on are considered. When the m.g.d. option is se-
lected, the procedure for taxonomy building returns the following nine concepts:

C-1111 ∈ F1
1

q(A) ← A:MiddleEastCountry
{ARM, BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE, YE}

C-9333 ∈ F3
3

q(A) ← speaks(A,B) & A:MiddleEastCountry, B:ArabicLanguage
{IR, SA, YE}

C-2333 ∈ F3
3

q(A) ← believes(A,’Druze’) & A:MiddleEastCountry
{IL, SYR}

C-3333 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:JewishReligion
{IR, IL, SYR}

C-4333 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:ChristianReligion
{ARM, IR, IRQ, IL, JOR, RL, SYR}
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C-5333 ∈ F3
3

q(A) ← believes(A,B) & A:MiddleEastCountry, B:MuslimReligion
{BRN, IR, IRQ, IL, JOR, KWT, RL, OM, Q, SA, SYR, TR, UAE}

C-33356 ∈ F3
5

q(A) ← speaks(A,B), believes(A,C) &
A:MiddleEastCountry, B:ArabicLanguage, C:MuslimReligion

{IR, SA}

C-14356 ∈ F3
5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:ChristianReligion, C:MuslimReligion

{IR, IRQ, IL, JOR, RL, SYR}

C-5356 ∈ F3
5

q(A) ← believes(A,B), believes(A,C) &
A:MiddleEastCountry, B:MuslimReligion, C:MuslimReligion

{BRN, IR, SYR}

organized in a DAG G′′
CIA which partially reproduces G′

CIA. Note that the stricter
conditions set in the language bias cause three concepts occurring in G′

CIA not
to appear in G′′

CIA: the scarsely significant C-5233 and C-6256, and the quite
interesting C-3233. Therefore the language bias can prune the space of clusters.
Note that the other concepts of G′

CIA emerged at l = 2 do remain in G′′
CIA as

clusters but with a different characterization: C-9333 and C-33356 instead of
C-2233 and C-8256, respectively.

When the m.s.d. condition is chosen, the intensions for the concepts C-2333
and C-3333 change analogously to G′

CIA. Note that G′′
CIA in both cases of m.g.d.

and m.s.d. is a hierarchical taxonomy. It can be empirically observed that the
possibility of producing a hierarchy increases as the conditions of the language
bias become stricter.

5 Final Remarks

Summary. In this paper we have briefly described a top-down incremental
method for Concept Formation within the KR&R framework of AL-log. Note
that it is not hierarchical because it returns a DAG instead of a tree structure.
Hierarchical taxonomies are to be preferred for better human understanding
and machine management [7]. We would like to emphasize that the biases in-
volved in the criterion of choice are powerful enough to force the method towards
the construction of a hierarchical taxonomy. Also it builds overlapping clusters.
Therefore the pattern-based clustering method proposed is better defined as a
clumping technique.

It is straightforward to reformulate the problem of Concept Refinement con-
sidered in this paper as a problem of Ontology Refinement [18]. Indeed our
solution approach takes a taxonomic ontology as input and returns subconcepts
of one of the concepts in the ontology, thus adapting the ontology to, e.g., a
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specific domain or the needs of a particular user. This is done by discovering
strong associations between concepts in the input ontology.

Related work. The relation between Frequent Pattern Discovery and Concept
Formation as such has never been investigated. Rather our pattern-based ap-
proach to clustering is inspired by [29]. Some contact points can be also found
with [30] that defines the problem of cluster-grouping and a solution to it that
integrates Subgroup Discovery, Correlated Pattern Mining and Conceptual Clus-
tering. Note that neither [29] nor [30] deal with (fragments of) First Order Logic
(FOL). Conversely, [27] combines the notions of frequent Datalog query intro-
duced in ILP and iceberg concept lattice borrowed from Formal Concept Analysis
(FCA) [5]6. As a result of this cross-fertilization between the two fields, iceberg
query lattices provide a condensed representation of frequent Datalog queries.
Generally speaking, very few works on Conceptual Clustering and Concept For-
mation in FOL can be found in the literature. They vary as for the approaches
(distance-based, probabilistic, etc.) and/or the representations (description log-
ics, conceptual graphs, E/R models, etc.) adopted. The closest work to ours is
Vrain’s proposal [28] of a top-down incremental but distance-based method for
Conceptual Clustering in a mixed object-logical representation. Also the idea
of resorting to Frequent Pattern Discovery in Ontology Learning has been al-
ready investigated in [16]. Yet there are several differences between [16] and
the present work: [16] is conceived for Ontology Extraction instead of Ontology
Refinement, uses generalized association patterns (bottom-up search) instead of
multi-level association patterns (top-down search), adopts propositional logic in-
stead of FOL. Within the same application area, [19] proposes a distance-based
method for clustering in RDF7 which is not conceptual. Without doubt, there
is a lack of evaluation standards in Ontology Learning. Comparative work in
this field would help an ontology engineer to choose the appropriate method.
One step in this direction is the framework presented in [1] but it is conceived
for Ontology Extraction. Regardless of performance, each approach has its own
benefits. Our approach has the advantages of dealing with expressive ontologies
and being conceptual. One such approach, and in particular the possibility of
forming concepts with an intensional description in the form of rule, has been
considered interesting in the case of concepts defining processes, e.g. within the
ontology EXPO for scientific experiments8.

Future work. For the future we plan to extensively evaluate this approach
on significantly big ontologies, hopefully on ResearchCyc9. The evaluation can
follow several directions. It could measure the cluster validity [8], or the category
6 FCA is a well-established and widely used approach for Conceptual Clustering. More

recently, it has been applied to Closed Pattern Mining. Note that the notion of
concept adopted in our approach is similar to the notion of formal concept at the
basis of FCA.

7 RDF is a simple ontology language for the World Wide Web.
8 Private communication with Larisa N. Soldatova, Department of Computer Science,

The University of Wales, Aberystwyth.
9 http://research.cyc.com/
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utility [4], or the similiarity with human-modeled ontologies for the problem at
hand [17]. Along each of these directions there is a lot of work to be done from
a methodological point of view.
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A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263.
Springer, Heidelberg (2002)



Frequent Pattern Discovery and Concept Formation 319

18. Maedche, A., Staab, S.: Ontology Learning. In: Staab, S., Studer, R. (eds.) Hand-
book on Ontologies, Springer, Heidelberg (2004)

19. Maedche, A., Zacharias, V.: Clustering Ontology-Based Metadata in the Semantic
Web. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS (LNAI),
vol. 2431, pp. 348–360. Springer, Heidelberg (2002)

20. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

21. Medin, D., Smith, E.: Concepts and concept formation. Annual Review of Psychol-
ogy 35, 113–138 (1984)

22. Michalski, R.S., Stepp, R.E.: Learning from observation: Conceptual clustering.
In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning: an
artificial intelligence approach, Morgan Kaufmann, San Francisco (1983)

23. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Pro-
gramming. LNCS, vol. 1228. Springer, Heidelberg (1997)

24. Rey, G.: Concepts and stereotypes. Cognition 15, 237–262 (1983)
25. Schmidt-Schauss, M., Smolka, G.: Attributive concept descriptions with comple-

ments. Artificial Intelligence 48(1), 1–26 (1991)
26. Semeraro, G., Esposito, F., Malerba, D., Fanizzi, N., Ferilli, S.: A logic framework

for the incremental inductive synthesis of Datalog theories. In: Fuchs, N.E. (ed.)
LOPSTR 1997. LNCS, vol. 1463, pp. 300–321. Springer, Heidelberg (1998)

27. Stumme, G.: Iceberg query lattices for Datalog. In: Wolff, K.E., Pfeiffer, H.D.,
Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 109–125. Springer,
Heidelberg (2004)

28. Vrain, C.: Hierarchical conceptual clustering in a first order representation. In:
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Abstract. This paper discusses how to learn theories that are modal,
concentrating on the issue of how modal hypotheses are formed. Illustra-
tions are given to show the usefulness of the ideas for agent applications.

1 Introduction

This paper introduces the idea of learning theories that are modal. To moti-
vate the development, we first discuss why learning modal theories is useful,
particularly in agent applications.

Consider an agent situated in some environment that can receive percepts
from the environment and can apply actions to the environment. Included in
a state of the agent may be information about the environment or something
that is internal to the agent. The state may be updated as a result of receiving
a percept. As well as some state, the agent’s model includes its belief base,
which can also be updated. Each action changes the current state to a new
state. The agent selects an action that maximises its expected performance. An
agent architecture based on the rationality principle of choosing an action that
maximises expected utility is in [1] and discussion of the learning component of
such agents is in [2].

We now concentrate on action selection. Agents use their belief bases to de-
termine which action to select. It is common for the beliefs that are needed for
this to have a modal nature, usually temporal or epistemic. For example, on the
temporal side, it might be important that at the last time or at some time in
the past, some situation held and, therefore, a certain action is now appropriate.
Similarly, on the epistemic side, beliefs about the beliefs of other agents may be
used to determine which action to perform. The usefulness of modal beliefs for
agents is now well established, in [3] and [4], for example. Besides, introspection
reveals that people use temporal and epistemic considerations when deciding
what to do; essentially, we are exploiting here the fact that modal logic is a part
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of mathematics which is useful for building agents that aspire to have similar
capabilities.

While many beliefs can be built into agents beforehand by their designers,
it is also common for beliefs to be acquired by some kind of learning process
during deployment. Since beliefs can be modal, the hypothesis languages used
by the learning system need to be modal. We are thus led to the conclusion
that symbolic machine learning needs to be generalised beyond classical logics,
such as first-order logic, to modal logics. In fact, modal higher-order logic will
be employed in this paper.

This paper investigates the potential usefulness of modalities for learning ap-
plications. Its two main contributions are machinery for specifying modal hy-
potheses and illustrations that show the usefulness of modal hypotheses in agent
applications. Given the generality of the agent paradigm and the ubiquity of
agent applications, we believe that agents will be a fertile application area for
symbolic machine learning techniques.

The next section contains a discussion of the logical machinery needed to
construct modal hypotheses. Section 3 contains two illustrations of the ideas for
agent applications. Section 4 gives some conclusions and discusses related work.

2 Modal Hypotheses

An approach to symbolic learning based on higher-order logic is presented in [5]
that introduces the concept of a predicate rewrite system which is a grammar
formalism for specifying search spaces of predicates that are used in hypothesis
languages. Thus, to achieve the desired generalisation to learning modal theories,
a key step is to extend predicate rewrite systems to the modal case. This is done
in this section. Along the way, we introduce a modal, higher-order logic which
provides a suitable setting for the development.

2.1 Modal Higher-Order Logic

We outline the most relevant aspects of the logic, focussing to begin with on the
monomorphic version. We define types and terms, and give an introduction to
the modalities that will be most useful in this paper. Full details of the logic,
including its reasoning capabilities, can be found in [6].

Definition 1. An alphabet consists of three sets:

1. A set T of type constructors.
2. A set C of constants.
3. A set V of variables.

Each type constructor in T has an arity. The set T always includes the type
constructor Ω of arity 0. Ω is the type of the booleans. Each constant in C
has a signature. The set V is denumerable. Variables are typically denoted by
x, y, z, . . .. Types are built up from the set of type constructors, using the symbols
→ and ×.
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Definition 2. A type is defined inductively as follows.

1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk

is a type. (Thus a type constructor of arity 0 is a type.)
2. If α and β are types, then α→ β is a type.
3. If α1, . . . , αn are types, then α1 × · · · × αn is a type.

The set C always includes the following constants.

1.  and ⊥, having signature Ω.
2. =α, having signature α→ α → Ω, for each type α.
3. ¬, having signature Ω → Ω.
4. ∧, ∨, −→, ←−, and ←→, having signature Ω → Ω → Ω.
5. Σα and Πα, having signature (α → Ω) → Ω, for each type α.

The intended meaning of =α is identity (that is, =α x y is  iff x and y are
identical), the intended meaning of  is true, the intended meaning of ⊥ is false,
and the intended meanings of the connectives ¬, ∧, ∨, −→, ←−, and ←→ are as
usual. The intended meanings of Σα and Πα are that Σα maps a predicate to  
iff the predicate maps at least one element to  and Πα maps a predicate to  
iff the predicate maps all elements to  . The type {α} is a synonym for α→ Ω,
used when we are intuitively thinking of a term as a set of elements rather than
as a predicate.

We assume there are necessity modality operators �i, for i = 1, . . . , m.

Definition 3. A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.
2. A constant in C having signature α is a term of type α.
3. If t is a term of type β and x a variable of type α, then λx.t is a term of

type α→ β.
4. If s is a term of type α → β and t a term of type α, then (s t) is a term of

type β.
5. If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a

term of type α1 × · · · × αn.
6. If t is a term of type α and i ∈ {1, . . . , m}, then �it is a term of type α.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form (Πα λx.t)
are written as ∀αx.t (in accord with the intended meaning of Σα and Πα).
Thus, in higher-order logic, each quantifier is obtained as a combination of an
abstraction acted on by a suitable function (Σα or Πα).

If α is a type, then Bα is the set of basic terms of type α [5]. Basic terms
represent individuals. For example, BΩ is { ,⊥}.

The polymorphic version of the logic extends what is given above by also
having available parameters which are type variables (denoted by a, b, c, . . .).
The definition of a type as above is then extended to polymorphic types that
may contain parameters and the definition of a term as above is extended to
terms that may have polymorphic types. We work in the polymorphic version of



Learning Modal Theories 323

the logic in the remainder of the paper. In this case, we drop the α in ∃α, ∀α,
and =α, since the types associated with ∃, ∀, and = are now inferred from the
context.

An important feature of higher-order logic is that it admits functions that can
take other functions as arguments. (First-order logic does not admit these so-
called higher-order functions.) This fact can be exploited in applications, through
the use of predicates to represent sets and predicate rewrite systems that are used
for learning, for example.

The reasoning system employed by the learner combines a theorem prover
and an equational reasoning system. The theorem prover is a fairly conventional
tableau theorem prover for modal higher-order logic. The equational reasoning
system is, in effect, a computational system that significantly extends exist-
ing functional programming languages by adding facilities for computing with
modalities. The proof component and the computational component are tightly
integrated, in the sense that either can call the other. Furthermore, this synergy
between the two makes possible all kinds of interesting reasoning tasks. It turns
out that, for agent applications, the most common reasoning task is a compu-
tational one, that of evaluating a function call. In this case, the theorem-prover
plays a subsidiary role, usually that of performing some rather straightforward
modal theorem-proving tasks.

We remark that the treatment of modalities in a computation has to be care-
fully handled. The reason is that even such a simple concept as applying a
substitution is greatly complicated in the modal setting by the fact that con-
stants generally have different meanings in different worlds and therefore the act
of applying a substitution may not result in a term with the desired meaning.
A similar problem occurs when the redex chosen for a computation step is in
the scope of a modality. A standard way to handle these problems is to insist
that some constants be rigid, that is, have the same meaning in each world (in
the semantics). In the modal higher-order logic setting, it is entirely natural for
some constants to be rigid; for example, all constants (data constructors and
functions alike) in the Haskell prelude can be declared to be rigid, except in
the most sophisticated applications. For non-rigid constants, of which there are
usually many in the belief bases of typical agents, great care must be taken to
ensure that they are only ever used in the correct modal contexts.

Theories in the logic consist of two kinds of assumptions, global and local.
The essential difference is that global assumptions are true in each world in
the intended interpretation, while local assumptions only have to be true in
the actual world in the intended interpretation. Each kind of assumption has a
certain role to play when proving a theorem.

As is well known, modalities can have a variety of meanings, depending on the
application. Some of these are indicated here; much more detail can be found in
[3], [4] and [6], for example.

In multi-agent applications, one meaning for �iϕ is that ‘agent i knows ϕ’.
In this case, the modality �i is written as Ki. The logic S5m is commonly used
to capture the intended meaning of knowledge.
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A weaker notion is that of belief. In this case, �iϕ means that ‘agent i believes
ϕ’ and the modality �i is written as Bi. The logic KD45m is commonly used
to capture the intended meaning of belief.

The modalities also have a variety of temporal readings. We will make use
of the (past) temporal modalities � (‘last’) and � (‘always in the past’). We
can also define the modality � (‘sometime in the past’), which is dual to �,
by �t ≡ ¬�¬t, where t is either a formula or a predicate. (The negation of a
predicate is defined below.)

Modalities can be applied to terms that are not formulas. Thus terms such as
Bi42 and �A, where A is a constant, are admitted. We will find to be partic-
ularly useful terms that have the form �j1 · · ·�jrf , where f is a function and
�j1 · · ·�jr is a sequence of modalities.

For a particular agent in some application, the belief base of the agent is a
theory. There are no restrictions placed on theories. Each assumption in a belief
base is called a belief. Typically, for agent j, local assumptions in its belief base
have the form Bjϕ, with the intuitive meaning ‘agent j believes ϕ’. Often ϕ is an
equation. Other typical local assumptions have the form BjBiϕ, meaning ‘agent
j believes that agent i believes ϕ’. Global assumptions in a belief base typically
have the form ϕ, with no modalities at the front since the fact that they are global
implicitly implies any sequence of (necessity) modalities effectively appears at
the front. Thus, in general, beliefs commonly have the form Bj1 · · ·Bjrϕ, where
r ≥ 0. If there is a temporal component to beliefs, this is often manifested by
temporal modalities at the front of beliefs. Then, for example, there could be a
belief of the form �2BjBiϕ, whose intuitive meaning is ‘at the second last time,
agent j believed that agent i believed ϕ’. (Here, �2 is a shorthand for ��.)

The following schema can be used as a global assumption.

(�is t) = �i(s t),

where s is a syntactical variable ranging over terms of type α → β and t is a
syntactical variable ranging over rigid terms of type α. (A term is rigid iff every
constant in it is rigid.) This schema also holds for the dual modality � (when β
is Ω). Thus, under the rigidity assumption on t, the schemas

(Bis t) = Bi(s t)
(�s t) = �(s t)

are global assumptions. Assumptions like these are often used in evaluating pred-
icates generated by predicate rewrite systems.

2.2 Predicate Rewrite Systems

In this subsection, we extend the predicate rewrite systems defined in [5] to
the modal case. Predicates are built up by composing basic functions called
transformations. Composition is handled by the (reverse) composition function

◦ : (a → b)→ (b → c)→ (a → c)

defined by ((f ◦ g) x) = (g (f x)).
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Definition 4. A transformation f is a function having a signature of the form

f : (�1 → Ω) → · · · → (�k → Ω) → μ→ σ,

where any parameters in �1, . . . , �k and σ appear in μ, and k ≥ 0. The type σ is
called the target of the transformation. The number k is called the rank of the
transformation.

Example 1. The transformation ∧n : (a → Ω) → · · · → (a → Ω) → a → Ω
defined by ∧n p1 . . . pn x = (p1 x) ∧ · · · ∧ (pn x), where n ≥ 2, provides the
‘conjunction’ of n predicates. Disjunction (∨n) of predicates can be defined in a
similar fashion.

The transformation ¬ : (a → Ω)→ a→ Ω defined by

¬p x = ¬(p x),

provides the negation of a predicate.
Consider the transformation setExists1 : (a → Ω)→ {a} → Ω defined by

setExists1 p t = ∃x.((p x) ∧ (x ∈ t)).

The function (setExists1 p) checks whether a set has an element that satisfies p.
The transformation top : a → Ω is defined by top x =  , for each x. The

transformation bottom : a → Ω is defined by bottom x = ⊥, for each x.

Many more transformations are given in [5].
Next the definition of the class of predicates formed by composing transforma-

tions is presented. In the following definition, it is assumed that some (possibly
infinite) class of transformations is given and all transformations considered are
taken from this class. A standard predicate is defined by induction on the num-
ber of (occurrences of) transformations it contains as follows. Let ��� denote a
(possibly empty) sequence of modalities �j1 · · ·�jr .

Definition 5. A standard predicate is a term of the form

���1(f1 p1,1 . . . p1,k1) ◦ · · · ◦���n(fn pn,1 . . . pn,kn),

where fi is a transformation of rank ki (i = 1, . . . , n), the target of fn is Ω,
���i is a sequence of modalities (i = 1, . . . , n), pi,ji is a standard predicate (i =
1, . . . , n, ji = 1, . . . , ki), ki ≥ 0 (i = 1, . . . , n) and n ≥ 1.

Definition 5 extends that of a (non-modal) standard predicate in [5] precisely in
that the definition here allows modalities to appear.

Example 2. Let p and q be transformations of type σ → Ω. Then

Bi(setExists1 (∧2 �Bjp �Bjq))

is a standard predicate of type {σ} → Ω. If t is a (rigid) set of elements of type
σ, then

(Bi(setExists1 (∧2 �Bjp �Bjq)) t)
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simplifies to

Bi∃x.((�Bj(p x) ∧ �Bj(q x)) ∧ (x ∈ t)),

which is true iff agent i believes that there is an element x in t satisfying the
property that at the last time agent j believed that x satisfied p and at some
time in the past agent j believed that x satisfied q.

Now we can informally define a predicate rewrite system. A predicate rewrite
is an expression of the form p � q, where p and q are standard predicates.
The predicate p is called the head and q is the body of the rewrite. A predicate
rewrite system is a finite set of predicate rewrites. One should think of a pred-
icate rewrite system as a kind of grammar for generating a particular class of
predicates. Roughly speaking, this works as follows. Starting from the weakest
predicate top, all predicate rewrites that have top (of the appropriate type) in
the head are selected to make up child predicates that consist of the bodies of
these predicate rewrites. Then, for each child predicate and each redex in that
predicate, all child predicates are generated by replacing each redex by the body
of the predicate rewrite whose head is identical to the redex. This generation
of predicates continues to produce the entire space of predicates given by the
predicate rewrite system. The details of the (non-modal) version of this can be
found in [5]; the modal version works in a similar fashion.

Example 3. Consider the following predicate rewrite system.

top � Bi(setExists1 (∧2 top top))
top � �Bjtop
top � �Bjtop
top � p

top � q

top � r.

The following is a path in the predicate space defined by the rewrite system.

top � Bi(setExists1 (∧2 top top)) � Bi(setExists1 (∧2 �Bjtop top))
� Bi(setExists1 (∧2 �Bjp top))

� · · · � Bi(setExists1 (∧2 �Bjp �Bjq)).

The set P� of predicates that can be generated from a predicate rewrite sys-
tem � is called a predicate language. Given some predicate language, it remains
to specify the hypothesis language, that is, the form of learned theories that em-
ploy predicates in the predicate language. There are many possibilities. For the
purpose of this paper, we can restrict attention to the class of decision lists [7]
that can be formed. Each internal node in such a decision list would be made up
of a predicate in the predicate language. For learning, we can employ standard
rule-learning algorithms.
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3 Illustrations

This section contains two illustrations of the usefulness of learning modal theories
for agent applications.

3.1 Majordomo Agent

Consider a majordomo agent that manages a household. There are many tasks
for such an agent to carry out including keeping track of occupants, turning
appliances on and off, ordering food for the refrigerator, and so on.

Here we concentrate on one small aspect of the majordomo’s tasks which is
to recommend television programs for viewing by the occupants of the house.
(See http://www.netflixprize.com for a related industrial problem.) Suppose
the current occupants are Alice, Bob, and Cathy, and that the agent knows the
television preferences of each of them. Methods for learning these preferences
were studied in [2]. Suppose that each occupant has a personal agent that has
learned (amongst many other functions) the function likes : Program → Ω,
where likes is true for a program iff the person likes the program. We also
suppose that the majordomo has access to the definitions of this function for
each occupant, for the present time and for some suitable period into the past.
Let Bm be the belief modality for the majordomo agent, Ba the belief modality
for Alice, Bb the belief modality for Bob, and Bc the belief modality for Cathy.
Thus part of the majordomo’s belief base has the following form:

BmBa ∀x.((likes x) = ϕ0)
�BmBa ∀x.((likes x) = ϕ1)

...

�n−1BmBa ∀x.((likes x) = ϕn−1)
�nBm∀x.(�Ba(likes x) = ⊥)

BmBb ∀x.((likes x) = ψ0)
�BmBb ∀x.((likes x) = ψ1)

...

�k−1BmBb ∀x.((likes x) = ψk−1)

�kBm∀x.(�Bb(likes x) = ⊥)

BmBc ∀x.((likes x) = ξ0)
�BmBc ∀x.((likes x) = ξ1)

...

�l−1BmBc ∀x.((likes x) = ξl−1)

�lBm∀x.(�Bc(likes x) = ⊥),

for suitable ϕi, ψi, and ξi. The form these can take is explained in [2].

http://www.netflixprize.com
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In the beginning, the belief base contains the formula

Bm∀x.(�Ba(likes x) = ⊥),

whose purpose is to prevent runaway computations into the infinite past for
certain formulas of the form �ϕ. The meaning of this formula is “the agent
believes that for all programs it is not true that at some time in the past Alice
likes the program”. After n time steps, this formula has been transformed into

�nBm∀x.(�Ba(likes x) = ⊥).

In general, at each time step, the beliefs about likes at the previous time steps
each have another � placed at their front to push them one step further back
into the past, and a new current belief about likes is acquired.

Based on these beliefs about the occupant preferences for TV programs, the
task for the agent is to recommend programs that all three occupants would be
interested in watching together. The simplest idea is that the agent should only
recommend programs that all three occupants currently like. But it is possible
that less stringent conditions might also be acceptable; for example, it might be
sufficient that two of the occupants currently like a program but that the third
has liked the program in the past (even if they do not like it at the present time).
Here is a (simplified) predicate rewrite system suitable for such a learning task.

top � ∧3 top top top
top � ∨2 top top
top � Bi likes % for each i ∈ {a, b, c}
top � �Bi likes % for each i ∈ {a, b, c}.

Let group likes : Program → Ω be the function that the agent needs to
learn. Thus the informal meaning of group likes is that it is true for a program
iff the occupants collectively like the program. (This may involve a degree of
compromise by some of the occupants.) Training examples for this task look like

Bm((group likes P1) =  )
Bm((group likes P2) = ⊥),

where P1 and P2 are particular programs. The definition of a typical function
that might be learned from training examples and the hypothesis language given
by the above predicate rewrite system is as follows.

Bm∀x. ((group likes x) =
if ((∧3 �Ba likes Bb likes Bc likes) x) then  
else if ((∧3 Bc likes (∨2 Ba likes Bb likes) top) x) then  
else ⊥).

Now let P be some specific program. In Figure 1, we show the computation of
(group likes P ). The redex selected is underlined at each step in the computation.
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The computation makes use of standard boolean functions defined in [5, Chap.
5] and axiom schemas like �Bi ϕ −→ Bi� ϕ and �ϕ = ϕ∨��ϕ. The former is
used to prove that formulas of the form

Bm�iBa ∀x.((likes x) = ϕi)

are theorems of the belief base. These theorems are then used to simplify the
(likes P ) terms located in different modal contexts in the computation. It follows
from the computation shown in Figure 1 that Bm((group likes P ) = ⊥) is a con-
sequence of the belief base of the agent. On this basis, the agent will presumably
not recommend to the occupants that they watch program P together.

In practice, one would use a richer hypothesis language for this problem. For
example, the majordomo can also make use of beliefs held by the personal diary
agents of Alice, Bob and Cathy in the hypothesis language. To recommend a
program for common viewing, it is important, for example, that all three are
free at the program time slot. Other relevant information can be included.

3.2 Learning by Revising Past Beliefs

For agents, learning is usually a continual life-long affair. For example, a recom-
mender agent for television programs needs to track the changing preferences
of its user over a life time. Similarly, to achieve optimal performance, an adap-
tive traffic-light control agent needs to monitor the traffic at regular intervals to
keep its beliefs about current conditions updated. This section presents a general
framework for incremental belief revision.

We will start by considering the following simplified form of the general prob-
lem. We want to track a function f : σ → τ that changes slowly over time. We
have access to the previous acquired definition �B (f = λx.ϕ) in the belief base.
(B is the belief modality of the relevant agent.) A new training set arrives and
now a new definition for f needs to be acquired. How do we proceed?

Obviously, in computing the current definition for f , we would like to reuse
those parts of the previous definition that are still valid in the light of new evi-
dence. One way to achieve that is to define an hypothesis language that captures
the different ways the old definition can be changed, or perturbed, in small ways.
We will show in stages how this can be done, starting with the description of a
variant of the standard decision-list learning algorithm that will be needed.

The standard decision-list algorithm is a greedy algorithm. A set of exam-
ples is covered at every step, and an element of Bτ is used to label the leaf
node constructed, the exact choice being determined by the majority class of
the covered examples. This is equivalent to using a constant function to make
predictions in the covered subregion. We extend the algorithm to use more com-
plex functions for this purpose. In the new algorithm, a label language L is
specified, in addition to a predicate language P . Learning proceeds via greedy
search in the usual fashion. At every step, we seek arg maxp∈P s(Sp), where Sp

is the subset of the current set of examples covered by p and s(S) is defined
to be maxl∈L |{(x, y) ∈ S : (l x) = y}|. The maximising label function l∗ for
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(group likes P )

if ((∧3 �Ba likes Bb likes Bc likes) P ) then � else . . .

if (�Ba likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if �(Ba likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if �Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if (Ba(likes P ) ∨ ��Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

...

if (Ba⊥ ∨ ��Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if (⊥ ∨ ��Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if ��Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if �(Ba(likes P ) ∨ ��Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if (�Ba(likes P ) ∨ �2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

...

if (�Ba⊥ ∨ �2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if (Ba⊥ ∨ �2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if (⊥ ∨ �2�Ba(likes P )) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if �2�Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

...

if �n�Ba(likes P ) ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if �n⊥ ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

...

if ⊥ ∧ (Bb likes P ) ∧ (Bc likes P ) then � else . . .

if ⊥ ∧ (Bc likes P ) then � else . . .

if ⊥ then � else . . .

...

⊥

Fig. 1. Computation using Bm of (group likes P )

the maximising predicate p∗ is then used to label Sp∗ . Accuracy is used as the
heuristic function here; other measures can be used instead, of course.

We have described the algorithm. The next step is to define a suitable predi-
cate language for use with it. In doing that, first we have to consider the structure
of a decision list, which has the following general form:
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λx.if (p1 x) then v1 else if (p2 x) then v2 . . . else if (pn x) then vn else v0. (1)

Writing qpi for ∧i ¬p1 . . . ¬pi−1 pi (where qp1 = p1 in the base case), this term
is equivalent to

λx.if (qp1 x) then v1 else if (qp2 x) then v2 . . . else if (qpn x) then vn else v0,

which we will call the expanded form of (1). We will effectively work with the ex-
panded form of a decision list in designing a suitable predicate language. (This is
done implicitly; expanded forms of decision lists are never explicitly constructed.)

We now proceed with the definition of a predicate language. The following
transformation plays a key role.

covered : Int → Int → (a → b)→ (a → Ω)
covered i j λx.if (p1 x) then v1 else

if (p2 x) then v2 . . . else if (pn x) then vn else v0

= if (i = 1) then (∨j p1 . . . pj) else (∧i ¬p1 . . . ¬pi−1 (∨j−i+1 pi . . . pj)).

Thus, given a decision list f , ((covered i j f) x) evaluates to true iff the individ-
ual x falls into one of the nodes between the ith and jth nodes inclusively. Let �
be the original predicate rewrite system used to acquire the previous definition
for f . The desired hypothesis predicate language is obtained by adding to �
the following predicate rewrites:

top � (covered i j �f ) % for each i , j ∈ {1 , . . . ,N }, i ≤ j ,

where N is the number of nodes in the previous definition for f .
We have specified the predicate language P�. It remains to specify a suitable

label language. For that, the set Bτ ∪ { (�f x) } is adopted.
We now show that the space of functions defined by the given decision-list al-

gorithm in conjunction with the specified predicate and label languages contains
most of the ways we might want to modify an existing decision list. For con-
venience, we write 〈(p1, v1), (p2, v2), . . . , (pn, vn), (top, v0)〉 as a notational short-
hand for a term having the form of (1) in the following. Suppose we have the
following formula in the belief base:

�B (f = 〈(p1, v1), (p2, v2), . . . , (p99, v99), (top, v0)〉). (2)

The following examples show how local surgery on (the expanded form of) the
decision list can be realised using the hypothesis language defined. More complex
operations can be achieved in a similar fashion.

Example 4. The operation of adding a node (r, v), where r ∈ P�, to the front
of (2) can be realised by the definition

B (f = λx.if (r x) then v else (�f x)).
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Example 5. The operation of adding a node (r, v), where r ∈ P�, to the end of
(2) can be realised by the definition

B (f = λx.if ((covered 1 99 �f) x) then (�f x) else if (r x) then v else v0),

which is equivalent to B (f = 〈(qp1 , v1), (qp2 , v2), . . . , (qp99 , v99), (r, v), (top, v0)〉).
Example 6. Consider the expanded form of (2). The operation of adding a node
(r, v), where r ∈ P�, between (qp29 , v29) and (qp30 , v30) and removing the node
(qp77 , v77) can be realised using

B (f = λx.if ((covered 1 29 �f) x) then (�f x)
else if (r x) then v

else if ((covered 30 76 �f) x) then (�f x)
else if ((covered 78 99 �f) x) then (�f x) else v0),

which can be unfolded into the following equivalent definition:

B (f = 〈(qp1 , v1), (qp2 , v2), . . . , (qp29 , v29), (r, v), (qp30 , v30),
(qp31 , v31), . . . , (qp76 , v76), (qp78 , v78), . . . , (qp99 , v99), (top, v0)〉).

Extensions to the Basic Setup We now consider some extensions to the basic
setup. To begin with, we will record all past definitions for f in the belief base.
Thus our belief base will contain, among other things, the following formulas:

�B (f = λx.ϕ1)
...

�n−1 B (f = λx.ϕn−1)
�n � B (f = λx.ϕn).

We can add the following predicate rewrites to our rewrite system to pick out
parts of any old definition previously learned.

top � (covered j k �i f ) % for suitable values of i , j and k .

If desired, one can also enrich the predicate rewrite system with predicate rewrites
that capture conditions that have occurred at least once in the past or in the recent
past, or those that have always held in the past.

Example 7. Assume the function f changes in a cyclical manner. If we already
have a good definition for each phase of the cycle, the algorithm should return

B (f = λx.if (top x) then (�if x) else v0),

for some i, as the current definition.

Example 8. We can piece together parts from definitions obtained at different
times to form the current definition. For instance, we can have

B (f = λx.if ((covered 2 8 �2f) x) then (�2f x)

else if ((covered 6 9 �4f) x) then (�4f x) else v0).
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4 Conclusions

This paper has introduced some key ideas needed to learn theories that are
modal. The first contribution is machinery for specifying modal hypothesis lan-
guages that extends the higher-order logic learning setting in [5]. Modalities
have obvious usefulness as a language feature; the general setup introduced here
shows a good way to incorporate them into the learning process. We would ex-
pect that the more traditional ILP settings [8] can be ‘upgraded’ in an analogous
fashion.

The two illustrations given constitute the second contribution of this pa-
per. Together they illustrate the kind of new possibilities opened up by having
modalities in the hypothesis language. The multi-agent-learning paradigm ex-
emplified by the majordomo agent is novel in ILP and has a lot of potential.
The theory revision example provides a fresh perspective on an old ILP prob-
lem. Its relation to existing techniques is discussed below. A common thread
that ties the two illustrations together is learning from multiple sources of
knowledge.

The technologies introduced here are new and more work needs to be done. We
have a prototype implementation of what is described here. The next step is to
carry out substantial experiments to confirm the effectiveness of the approach.
The complexity of learning modal theories can be analysed in the framework
given in [9]. We expect results, both positive and negative, similar to those
established in the non-modal setting to continue to hold in the modal setting.
In other words, modalities do not come at a significant cost.

Related work. Description logic can be regarded as a form of modal logic [4].
Related work can be found in the literature on learning theories in description
logic. (See [10] and [11], for example, and the references therein.)

Incremental theory revision has long been studied in ILP following [12] and
[13]. The framework introduced here allows the new definition to be obtained
by revising previously acquired definitions going back multiple steps. Existing
frameworks are restricted to the revision of one previous definition. The other
noteworthy difference is that admissible revision operations are captured in the
hypothesis language in our framework, not in the actual theory revision algo-
rithm used as in existing setups.

There is an extensive literature on belief revision much of which was inspired
by [14]. In these works, if modal logic is employed at all it is usually as a log-
ical meta-language for the belief revision process itself, rather than the logic
in which the beliefs are expressed (which is usually propositional). We are not
aware of any works on belief revision in which the logic of the beliefs is as
rich as modal higher-order logic. Also existing belief revision frameworks do
not consider generalisation, which is a key aspect of learning and, we would
argue, an essential component of any process by which a reasonably sophisti-
cated agent might acquire new beliefs. On the other hand, we have not explicitly
addressed here the important issue of inconsistency as frameworks for belief
revision do.
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Abstract. This paper proposes a mining algorithm for relational
frequent patterns based on a bottom-up property extraction from ex-
amples. The extracted properties, called property items, are used to
construct patterns by a level-wise way like Apriori. The property items
are assumed to have a special form, which is defined in terms of mode
declaration of predicates. The algorithm produces frequent itemsets as
patterns without duplication in the sense of logical equivalence. It is
implemented as a system called Mapix and is evaluated with four differ-
ent datasets with comparison to Warmr. Mapix had large advantage in
runtime.

1 Introduction

Association rule mining algorithms (e.g. Apriori[1]) construct association rules
on a finite set of items. An object is identified with a set of items or an attribute-
value vector. With the first-order representation or the multi-relational DB set-
ting, there will be infinitely many different objects and their representations need
infinitely many attributes.

Warmr[2,3,4], a successful relational association rule miner, treats first-order
items. In the classification with the first-order representation the problem of in-
finite attributes is solved by a top-down search and incremental construction of
rules. Rules classifying interesting objects from others are explored by generat-
ing infinite different attributes incrementally. Warmr also generates candidate
patterns (queries) in top-down way from simple to complex in level-wise. It effi-
ciently cuts down unnecessary patterns using a saved infrequent query set. The
set has a similar function to the principle of Apriori.

If we can prepare frequent items in advance we may directly apply Apriori to
multi-relational mining. We propose a concept of first order item called a prop-
erty item which can be prepared from examples in a bottom-up way. Itemsets
(called property itemsets) are also defined from a set of property items and a
simple composition. Then we may say that the concept of property items is a
kind of propositionalization but they are defined dynamically from data. A set
of examples satisfied by an itemset is an intersection of cover sets of belonging
items. Therefore Apriori algorithm can be fully applied.
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The following section introduces preliminary definitions and an outline of the
method. Then concepts of property items and itemsets are given in Section 3.
Section 4 describes Mapix algorithm and its correctness. In Section 5 Mapix is
evaluated on four different datasets comparing with Warmr.

2 Preparations and an Outline

We assume familiarity on logic programming. Mapix uses Datalog, a Prolog
without functors, to represent data and patterns. Datalog formulae are of the
form ∀(h ← b1 ∧ . . . ∧ bn) (called a clause), where ∀F means all variables in
F are universally quantified and ∀ is omitted when understood from context.
Here, h, b1, . . . , bn are logical atoms without functors, that is, a predicate symbol
followed by a designated number of terms which are constants or variables. For
c = h ← b1 ∧ . . . ∧ bn, head(c) denotes the head atom h and body(c) denotes
the body conjunction b1 ∧ . . . ∧ bn. A fact is a clause without body. We use
substitutions, described by θ = {v1/t1, . . . , vn/tn}, where vi’s are variables and
ti’s are terms. Pθ for a formula P means replacing every variable vi with ti.

For our mining task a Datalog DB R is given. A predicate corresponds to
a relation. A predicate p is extensional when every formula whose head uses p
is a ground (no variable) fact in R, otherwise intensional. One of extensional
relations is specified for a target (It is called as key for Warmr). A fact of the
target relation is called a target instance.

A query is a clause without head ← b1 ∧ . . .∧ bn, equivalently an existentially
quantified conjunction ∃(b1 ∧ . . .∧ bn), where ∃Q for a formula Q means that all
variables in Q are existentially quantified. When a formula is clearly meant to
be a query the ∃ is dropped. A query q is said to succeed wrt R when R |= ∃q.

The following gives patterns, among which a mining algorithm outputs fre-
quent patterns. Some definitions are brought from [3] with slight modification.

Definition 1 (pattern). A pattern is a Datalog formula whose head is of the
target predicate. For a target instance e and a pattern P , P (e) denotes a query
∃(body(P )θ) where θ is the mgu (most general unifier) of e and head(P ). The
substitution θ is called a target instantiation of e to P . When P (e) succeeds we
say that e possesses P .

Definition 2 (frequent pattern). The frequency of P is the number of target
instances which possess P . P is frequent if its frequency exceeds supmin ·N , where
supmin is a given minimal support and N is the number of all target instances.

Example 1. Let us consider a DB Rfam on a family, illustrated in Fig. 1. Here
we consider four relations, parent(x, y) meaning x is a parent of y and drawn by
a line in the figure, female(x) meaning x is female, marked ∗, male(x) for male
x, names without ∗, and grandfather(x) meaning x is someone’s grandfather, not
indicated explicitly. We choose grandfather as a target, including five instances.

Then, for example the following formula is a pattern.

P = grandfather(A) ← male(A) ∧ parent(A, B) ∧male(B)
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haruo haruko *

natsuo natsuko * akio fuyuko *

natsutaro

ichiro jiro

taro hanako*

fuyukazu fuyuji

hiroshi hiroko *

koichi koji yoko *

yoichi yoji yozo kyoko *

kyoichi hiromi *

kenji satoko *

Fig. 1. A family example

Then for a target instance e = grandfather(haruo), P (e) means a query,

P (e) = ∃((male(A) ∧ parent(A, B) ∧male(B))θ)
= ∃(male(haruo) ∧ parent(haruo, B) ∧male(B))

where θ is the target instantiation of e to P , i.e. the mgu of e and the head of P .
The query P (e) succeeds by a variable assignment {B *→ akio} then e possesses
P . Actually all five target instances possess P and then its frequency is five. �

This paper assumes that useful patterns have a special form. We call such pat-
terns property items, discussed in Section 3. Property items can be extracted from
given target instances in a bottom-up way. The proposing algorithm Mapix, a
mining algorithm using property items extracted from examples, automatically
collects property items from a given DB. We only give a frequent pattern miner
and leave a part giving association rules. The outline of Mapix is as follows:

1. It samples target instances from a target relation.
2. For each sampled target instance it collects facts (property) hold on DB.
3. By generalizing the facts it generates first-order items, called property items.
4. It executes Apriori-like level-wise frequent pattern mining algorithm by re-

garding the satisfaction of a property item as possession of an item.

3 Property Items and Extraction from Examples

For an instance grandfather(koji), we may find some facts on it, for example,

parent(koji, yozo) ∧ parent(yozo, kyoichi) ∧male(kyoichi).

We may read it that koji has a grandson. We call the fact a property of
grandfather(koji). By replacing terms by variables and affixing a head we have
a pattern, grandfather(A)← parent(A, B) ∧ parent(B, C) ∧male(C).

Many ILP algorithms use execution modes and types of predicates. The
above fact on koji will be analysed by a mode theory. Here we give modes
to the predicates as parent(+,−), male(+), and female(+), where +/− means
an input/output mode argument (〈+〉/〈−〉-arg. in short). We do not give mode
for target predicate. By using mode we distinct two different classes of predi-
cates obeying [7]. A predicate with at least one 〈−〉-arg. is called a path predi-
cate, e.g. parent(+,−). A predicate without 〈−〉-arg. is called a check predicate,
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e.g. male(+) and female(+). An instance of a path/check predicate in DB is
called a path/check literal.

Then the extracted fact can be observed from the following points.

– A path literal leads a term from a term, e.g. parent(koji, yozo) leads yozo
from koji.

– Terms lead from a term in a target instance make a chain, e.g.koji, yozo,
and kyoichi, and it stops by a check literal, e.g. male(kyoichi).

Although we may imagine facts breaking this form, the observation suggests a
general form of properties found in multi-relational DB. A chain of path literals
has a function referring an object (an attribute) of a target instance, and a check
literal describes its character (an attribute value). We assume all interesting facts
have this two-part (a referential part and a description part) form.

Similar idea to the property appeared in contexts of propositionalization. The
concept of first-order features used in LINUS[8] and 1BC[6] is an example. The
idea of bottom-up construction of property is related to pathfinding[11] to solve
the local plateau problem for top-down induction.

Formally a property of a target instance is defined by the following definition.

Definition 3 (property). A property of a target instance e on a check literal
c wrt DB R is a minimal set P of ground atoms in R that satisfies

1. P includes exactly the one check literal c, and
2. P can be given a linear order where a term in 〈+〉-arg. of a literal l ∈ P is

occurred in some precedent literals in the order or the target instance e.

Aimed special patterns are given by variblizing properties.

Definition 4 (variablization). For a ground formula α a formula β is a vari-
ablization of α when

1. β does not include any ground term, and
2. there exists a substitution θ = {v1/t1, · · · , vn/tn} that satisfies

(a) α = βθ and (b) t1, . . . , tn in θ are all different terms appeared in α.

Definition 5 (property item). Let P = {l1, · · · , lm} is a property of a target
instance e wrt DB R, where the linear order for P is given as l1 to lm. Then
the variablization of the clause e ← l1 ∧ . . . ∧ lm is called a property item (or
simply, an item in short) of the target.

Note that a property item is a pattern, and then possessing a property item I
by e and a query I(e) are used as in Definition 1.
Example 2. With the DB given in Example 1 the set

{parent(koji, yozo), parent(yozo, kyoichi), male(kyoichi)}

is a property of a target instance grandfather(koji) on the check literal male
(kyoichi). They satisfy the condition by the linear order written in the line.
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The following clause is made from the property with the target instance,

grandfather(koji) ← parent(koji, yozo)∧parent(yozo, kyoichi)∧male(kyoichi)

and is variablized to

item1 = grandfather(A) ← parent(A, B) ∧ parent(B, C) ∧male(C)

which is an item. Naturally grandfather(koji) possesses it since the query

item1(grandfather(koji)) = ∃(parent(A, B)θ ∧ parent(B, C)θ ∧male(C)θ)
= ∃(parent(koji, B) ∧ parent(B, C) ∧male(C))

succeeds wrt Rfam, where θ = {A/koji} is the target instantiation of
grandfather(koji) to item1. �

Lemma 1. If I is an item of e then e possesses I.

Proof. The substitution used in the variablization to have the item from a
property of e gives the variable assignment for the query I(e). �

The converse does not hold however. Let us think predicates p(+,−), q(+, +)
in DB R = {r(a), r(c), p(a, b), p(c, d), p(c, e), q(b, b), q(d, e)} and r(·) for a target.
For a target instance r(a), {p(a, b), q(b, b)} is a property of it and then I =
r(A) ← p(A, B) ∧ q(B, B) will be an item of r(a). Of course r(a) possesses I.
Another item J = r(C) ← p(C, D) ∧ p(C, E) ∧ q(D, E) can be got from r(c).
r(a) possesses J because ∃(p(a, D) ∧ p(a, E) ∧ q(D, E)) succeeds by a variable
assignment {D *→ b, E *→ b}. However J is not an item of r(a).

As itemsets of market basket DB we treat a set of property items as a pattern.

Definition 6 (property itemset). A set of property items of a target is called
a property itemset (or an itemset in short). For a property itemset IS =
{I1, . . . , In}, where we assume an item share no variables with others, it is iden-
tified with a clause (pattern) which is also denoted by IS and is defined as,

head(IS) = head(I1)ρ and body(IS) = body(I1)ρ ∧ . . . ∧ body(In)ρ,

where ρ, called a head unification, is the mgu unifying head(I1)ρ= . . .=head(In)ρ.
When IS is a subset of the whole set U of items we say that IS is on U .

Example 3. The following line also gives an item.

item2 = grandfather(D)← parent(D, E) ∧ female(E),

This and item1 of Example 2 make an itemset IS = {item1, item2}, representing

IS=grandfather(A)←parent(A,B)∧parent(B,C)∧male(C)∧parent(A,E)∧female(E).

For e = grandfather(koji),

IS(e) = ∃(parent(koji, B)∧parent(B, C)∧male(C)∧parent(koji, E)∧female(E)),

which does not succeeds, and then e does not possess IS. �
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The following lemma is important to apply Apriori for property item mining.

Lemma 2. Let T be a set of target instances, I1 and I2 items, and IS = {I1, I2}
an itemset of them. Then the following equation holds.

{e ∈ E | e possesses IS} = {e ∈ T | e possesses I1} ∩ {e ∈ T | e possesses I2}

Proof. When e possesses IS, IS(e) = ∃(body(IS)θ) succeeds for target instan-
tiation θ of e to IS. Because body(IS) = body(I1)ρ ∧ body(I2)ρ for the head
unification ρ, IS(e) = ∃(body(I1)ρθ ∧ body(I2)ρθ). The variable assignment for
IS(e) also lets ∃(body(I1)ρθ) and ∃(body(I2)ρθ) succeed. Noting ρ only renames
variables, it means I1(e) and I2(e) succeed. Then e also possesses I1 and I2.

Conversely let e possess I1 and I2, i.e. I1(e) = ∃(body(I1)θ1) and I2(e) =
∃(body(I2)θ2) succeed. As I1 and I2 share no variables, θ1 and θ2 are composed
to θ by simple merger. The θ is a unifier of head(I1) and head(I2) and the head
unification ρ for IS is the mgu between them. Then there is σ s.t. θ = ρσ, and
σ is the target instantiation to IS, i.e.,

IS(e) = ∃(body(IS)σ) = ∃((body(I1)ρ ∧ body(I2)ρ)σ)
= ∃(body(I1)θ ∧ body(I2)θ) = ∃(body(I1)θ1) ∧ ∃(body(I2)θ2).

This query succeeds and then e possesses IS. �

4 Pix and Mapix Algorithm

This section shows the miner Mapix, and Pix to collect property items.
Table 1 shows Pix, which takes a target instance e and outputs all its items.

Pix first generates a saturation clause[12] of e for efficiency in the following
steps. The saturation clause is made of the instance e added to its body all
of relevant ground facts in DB. Thereafter PropGen is invoked with each c
of check literals to collect all properties whose description part is c. Collected
properties are variablized to items and checked its minimality and duplication.

Patterns outputted by a mining algorithm should have no duplication in the
sense of logical implication. Although implication is undecidable generally, it is
equivalent to θ-subsumption when recursion is not included.

Definition 7. Let ∃C and ∃D be queries, i.e. C and D are conjunctions and
are regarded as sets of conjunct atoms. When C ⊇ Dθ, we say that C subsumes
D which is denoted by C,D. If C,D and D,C, then we say that C and D is
subsumption-equivalent and write C∼D.

PropGen recursively grows partial property (path) from a given check literal.
It chooses a possible literal to add path and stops when a property is completed.
The following lemmata give the correctness of Pix algorithm.

Lemma 3. With a target instance e and a check literal c in its saturation,
PropGen returns Pix all properties of e on c.
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Table 1. An algorithm Pix, extracting property items from an example

Pix(e):
input e = r(t1, . . . , tm) : a target instance;
output Items : the set of property items extracted from e;
1. Se := the set of body literals of the saturation of e;
2. Items := ø;
3. For each check literal c ∈ Se do
4. NewProps := PropGen(c, ø, ø, {t1, . . . , tm}, Se);
5. For each P ∈ NewProps do
6. I := variablization of P ;
7. If I is minimal and ∀I ′ ∈ Items, I �∼I ′ then Items := Items ∪ {I};
8. return Items;

PropGen(add, paths, Topen, Thead, S):
input add : a literal;

paths : a partial property;
Topen : the set of terms that is not connected to the head;
Thead : the set of terms used in target instance;
S : a subset of Se, where used literals are removed;

output Props : the set of all properties of e that are superset of the paths
and is made from S;

1. Topen := Topen − {t|t is in 〈−〉-arg. of add} ∪ {t|t is in 〈+〉-arg. of add };
2. If Topen − Thead = ø then Props := {paths ∪ {add}}
3. else if S = ø then Prop := ø
4. else Props := ø;
5. C := { ∈ S| is a path literal and has at least one term

in Topen − Thead in its 〈−〉-arg.};
6. For each literal  ∈ C do
7. Props := Props ∪ PropGen(, paths ∪ {add}, Topen, Thead, S − {});
8. Return Props;

Proof. For any property P of a target instance e on c we need prove that
PropGen generates P from e. In order to prove this we need confirm the follow-
ing proposition. Here we assume an order satisfying the condition in
Definition 3.
1. When paths is a partial property of P , containing c, a certain literal l in P

and literals laying between c and l by the order, PropGen tries a literal �
to add to path where � is the immediate precedent literal of l in the order.

2. When paths becomes a complete property PropGen quits the recursion and
outputs including path.

The first proposition is true because such � is always in C of line 5 of PropGen.
Every term in 〈+〉-arg. of literals in paths has to appear in some precedent literals.
Then � has some term in its 〈−〉-arg., the term which appears in a 〈+〉-arg. of
a literal in paths and does not appear in any 〈−〉-arg. of precedent literals in
paths. This is the condition of literals in C in line 5 of PropGen. Unless � is
such literal it is unnecessary by the minimality of property.

The second is obvious by line 2 of PropGen. �
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Lemma 4. PropGen always terminates for the call from Pix and when it ter-
minates every return to Pix satisfies the conditions 1 and 2 of Definition 3
without minimality.

Proof. PropGen terminates because every recursive call consumes a literal
from finite S. Obviously the return of PropGen satisfies the conditions. �

Lemma 5. For a target instance e Pix always terminates and generates all and
the only property items of e, which include no duplication in the sense of ∼.

Proof. Pix collects all properties of e containing each check literal using
PropGen, which has the required properties because of Lemmata 3 and 4.
Pix simply checks the minimality and duplication. �

Table 2 gives Mapix algorithm, which simply obeys the outline. It first samples
target instances and collects all of their items by Pix. After the frequencies are
counted all singleton itemsets consisting of each frequent item are generated.
Then it goes to an Apriori-like level-wise mining step, where Candidate pre-
pares the next level itemsets of which every sub-itemset is frequent. There are
two difference from the original Apriori. One is in line 7, where items possessed
by all instances are deleted. We call such items tautologyish. Any itemset combin-
ing frequent itemsets and tautologyish items is frequent. Then all combination
of tautologyish items are annoyingly produced. This is optional in case of need
leaving tautologyish items when we want all frequent itemsets.

Another difference is in line 5 of Candidate. It prohibits two-item itemsets in
which one subsumes the other. As in higher level itemsets all sub-itemsets have
to be included in frequent itemsets, all itemsets consequently do not include a
pair in which one subsumes the other. This is used for correctness.

Lemma 6. Every item has no literal which only includes variables of head vari-
ables in its body when it has at least one path literal.

Proof. If an item I that has at least one path literal has a body literal l with
only variables of its head, then I − {l} is still an item. This is because l has no
effect to connect input and output variables. This breaks the minimality. �

Lemma 7. If IS1,IS2 for itemsets IS1 and IS2, IS1,I for any I ∈ IS2.

Proof. The head unification ρ for IS2 and θ for IS1⊇IS2θ makes IS1⊇Iρθ. �

Lemma 8. If IS,J for an itemset IS and an item J , I,J for some I ∈ IS.

Proof. Let G(I) (similarly, G(IS)) be a directed graph corresponding to an
item I (an itemset IS, resp.). Nodes of G(I) are literals of I, and an edge lies
from l1 to l2 when a variable at an 〈−〉-arg. of l1 appears in l2 for 〈+〉-arg.

In G(J) any two nodes connect to a node corresponding the check literal of
J . Also we see that in G(IS) two nodes corresponding literals in different items
connect to no common node unless either literal includes only variables of head.

Besides IS,J makes a homomorphism from G(J) to G(IS). Then if in G(J)
two nodes connecting to a common node are mapped to nodes in G(IS), the
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Table 2. An algorithm Mapix, mining relational frequent patterns using Pix

Mapix(R, T , supmin):
input R : a DB;

T : the target relation, the set of ground instances of the relation;
supmin: the minimum support threshold;

output Freq : the set of itemsets whose supports are larger than supmin

1. Select an appropriate size of subset T ′ ⊆ T ;
2. U := ø; Freq := ø;
3. For each e ∈ T ′ do U := U ∪ Pix(e);
4. For each I ∈ U and e ∈ T do
5. If query I(e) succeeds then cover[I, e] := 1 else cover[I, e] := 0;
6. F := { I ∈ U |

�
e∈T cover[I, e] ≥ supmin · size(T )};

7. Delete items which hold
�

e∈T cover[I, e] = size(T ) from F ; # optional
8. Give a linear order to items in F ;
9. k := 1; F1 := {〈I〉 | I ∈ F}
10. while Fk �= ø do
11. Ck+1 := Candidate(Fk);
12. Fk+1 :=

�
IS ∈ Ck+1 |

�
e∈T

��
I∈IS cover[I, e]

�
≥ supmin · size(T )

�
;

13. Freq := Freq ∪ Fk+1; k := k + 1;
14. Return Freq;

Candidate(F):
input F : set of frequent itemsets of a level;
output C : the set of candidate itemsets of the next level;
1. C := ø
2. For each pair (〈I1, . . . , Ik〉, 〈I ′

1, . . . , I
′
k〉) of itemsets in F

where I1 = I ′
1, . . . , Ik−1 = I ′

k−1, and Ik < I ′
k do

3. C := C ∪ {〈I1, . . . , Ik−1, Ik, I ′
k〉};

4. For each IS ∈ C do
5. If k = 1 and (I�I ′ or I ′�I), where IS = 〈I, I ′〉 then delete IS from C;
6. For each I ∈ IS do if IS− {I} �∈ F then delete IS from C;
7. Return C;

mapped nodes also have to connect to a certain common node. Then it must be
I,J for some I ∈ IS unless IS include literal which has only head variables.

Consider the case IS has a literal l including only head variables and l is
mapped from a literal of J . If J does not include any path literal, I,J for the
item I which l belongs to. J can not include other literal because of lemma 6. �

Lemma 9. Let U be a set of items, of which every pair are not subsumption
equivalent, IS1 and IS2 any itemsets on U in which for every pair of items one
does not subsume the other. Then IS1 �∼IS2 unless IS1 = IS2.

Proof. Wolg we assume IS1 − IS2 �= ø and I ∈ IS1 − IS2. Then from IS1∼IS2

try to yield a contradiction. IS1∼IS2 means (a)IS1,IS2 and (b)IS2,IS1.
(b) yields IS2,I by Lemma 7, then J,I for some J∈IS2 by Lemma8. Another

derivation from J results I ′,J for some I ′∈ IS1 by (a) and Lemmata 7 and 8.
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Table 3. The fair numbers Nsupmin,δ of examples for δ = 1%

supmin 50% 30% 10% 5% 3% 1% 0.5% 0.3% 0.1%

Nsupmin,δ 7 13 44 90 152 458 919 1533 4603

I �= I ′. Otherwise, J,I and I = I ′,J yields I∼J . With the premise of lemma
that any pair of items in U are not subsumption-equivalent we have to say that
I = J , which against the way of choosing I. Even for I �= I ′, we have I ′,I
because of transitivity of , and it is also another contradiction to the premise
that no pair of items in IS1 has subsumption relationship. �

Theorem 10. Let U be the set of all property items of target instances and
supmina given minimum support. When Mapix uses all instances as property
item extraction, Mapix enumerates all frequent property itemsets on U without
duplication in the sense of subsumption equivalence.
Proof. This is direct from the preceding lemmata and the correctness of
Apriori[1]. By Lemma 5 MAPIX collects U using all target instances. After
Mapix generates all frequent items, i.e. level 1 itemsets, advances to search
higher levels. It is done first by generating candidate of the next level
(Candidate routine) and check the frequency. The correctness of Candidate

is left to [1].
PIX does not generate subsumption-equivalent items. As already explained,

all itemsets examined do not include item-pair in which one subsumes the other.
These and Lemma 9 assure prohibition of duplicated patterns produced.

Frequency is counted by taking intersection of cover sets by element items.
The correctness of this operation is given in Lemma 2. �

Here we gave a note on the equivalence. A mining algorithm C-armr[5] treats
another kind of equivalence, which is relative to a given bakground knowledge.
Mapix treats the equivalence of patterns themselves and may output duplica-
tions if some background knowledge are considered.

We may observe that a frequent item is extracted from randomly chosen exam-
ples in a probability more than or equal to supmin. Unfortunately this is not true
generally, because possessing an item I by a target instance e is not equivalent
to being able to extract I from e, which was seen in Lemma 1 and the following
paragraph. However likely these two coincide. In that case if Mapix has enough
large number of target instances sampled, it likely produces all frequent item-
sets. Let Nsupmin,δ denote the minimum integer satisfying (1 − supmin)N < δ.
Then, when Mapix samples Nsupmin,δ instances for item extraction, output
of Mapix includes an arbitrary frequent itemset in a probability ≥ 1 − δ.
We call the number Nsupmin,δ a fair number of examples. Table 3 shows the
numbers.

5 Applying to Datasets and Results

For evaluating Mapix we used four datasets, of which Table 4 gives a summary.
We also respect Warmr as a standard for comparison. All experiments were
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Table 4. Relations and their mode in four datasets

Bongard target=bongard(pic)
relations: triangle(+pic,-*obj) and 3 other figure rels. : both,

config(+pic,+obj,#conf) : check.

east-west train target=east(train)
relations: has car(+train,-car) : path, infront(+train,+car,+car) : check,

shape(+car,#shape) and 6 other train feature rels. : check.

mutagenesis target=active(drug)
relations: bond(+drug,-*atomid,-*atomid,#int) : both,

atm(+drug,#atomid,#element,#int,#charge) : path,
lumo(+drug,#energy) and one another : check,
benzene(+drug,-*ring) and 11 other structural rels. : both,
member(#ring,+ringlist) : check,
anthracene(+drug,-*ringlist) and one another : both.

English target=english(node)
relations: adjp(+node,-node) and 26 other syntactic tag relations : path,

word(+node,-word) : path, nn(+word) and 41 other POS tag rels. : check.

done by an implementation of Mapix using SWI-Prolog Ver.5.4.7 for Windows
on PC of CPU Xeon 2.8GHz 2GB Memory.
Bongard. This is a general discrimination problem developed by M. Bongard.
It consists of 1000 records of figure configuration. We used a dataset prepared
for Warmr with only modification to fit the bias declaration.
East-West train. This is dataset originally from East-West challenge
competition[10]. We used 120 trains without class labels.
Mutagenesis. This is a well used dataset as ILP classification and mining prob-
lem, which is prepared in [13]. It includes record for 188 molecules, of which 125
are positive for high mutagenic character, however we did not use the data for
classification and used the all 188 records together.
English corpus. This includes English corpus, which is originally from Wall
Street Journal and Penn Treebank project[9] gave POS tags and syntactic analy-
sis. Information is merged to Datalog format as shown in Table 5. 1000 sentences
are used for mining. This dataset is not prepared for Warmr.

We admit another two mode types # (constant) and ∗ (open). The definition
of check/path literal is not changed, which only depends on 〈−〉-args. These affect
the condition of properties and variablization. In a property terms at # or ∗ need
not appear in precedent literals in an order. Then it is useless that a term in 〈+〉-
arg. appears at precedent 〈#〉- or 〈∗〉-args. On variablizing, they work differently.
A term at 〈#〉-arg. is left ground even if the same terms are variablized in the other
places. A term at 〈∗〉-arg. is variablized with a new variable and it is not used in
the other place even for args. placed by the same term.

Table 6 shows the numbers of candidate and frequent itemsets for the datasets.
We see that train and mutagenesis are complex in the aspect of items compared
with the other two. English corpus has large number of items but is sparse. As
a sample all frequent items of English corpus for supmin = 10% are in Table 7.
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Table 5. A example of sentence in English corpus dataset

(a) Original sentence: Japan ranks as only the fourth largest foreign
investor in Mexico, with 5% of the total investments.

(b) POS tag knowledge:
np(t11 japan) vbz(t11 ranks)
in(t11 as) rb(t11 only) dt(t11 the)
jj(t11 fourth) jjs(t11 largest) · · ·

(c) Syntactic tag knowledge:
np(t11 1, t11 2) word(t11 2, t11 japan)
vp(t11 1, t11 3) word(t11 3, t11 ranks)
pp(t11 3, t11 4) word(t11 4, t11 as)
np(t11 4, t11 5) word(t11 5, t11 only)
word(t11 5, t11 the) adjp(t11 5, t11 6)
word(t11 6, t11 fourth)
word(t11 6, t11 largest) · · ·

(d) A graphical representation:
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Table 6. Numbers of candidate and frequent itemsets produced by Mapix on levels

Bongard 10% higher level −→ total
candidate 14 53 29 9 1 106
frequent 12 29 22 5 0 68

Train 10% (including no tautologyish items)
candidate 29 231 527 1060 1381 1198 654 207 31 1 0 5319
frequent 22 145 495 1030 1380 1198 654 207 31 1 0 5163

Train 10% (including tautologyish items)
candidate 29 299 1006 2835 5461 7398 7008 4565 1960 508 65 2 0 31136
frequent 25 213 974 2805 5460 7398 7008 4565 1960 508 65 2 0 30983

Mutagenesis 10% (including no tautologyish items)
candidate 56 134 99 76 29 4 0 398
frequent 17 60 95 76 29 4 0 281

Mutagenesis 10% (including tautologyish items)
candidate 56 323 1335 4645 11441 20767 28458 29787 23860 14519
frequent 26 249 1331 4645 11441 20767 28458 29787 23860 14519
candidate 6591 2159 481 65 4 0 144491
frequent 6591 2159 481 65 4 0 144383

English 1%
candidate 7628 34453 2193 296 23 0 44593
frequent 263 934 758 213 23 0 2191

The next experiment (Fig. 2) examined relationship between the number of
examples used and the number of frequent itemsets produced. As using random
sampling, experiments were iterated ten times (Three times for English due to
time limitation) and the averages were plotted. The lines grow toward whole
sampling. All datasets took similar trend. The ×’s on lines show points for the
case of the fair number of examples. The lines converge before the fair numbers.
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Table 7. Items produced in English corpus dataset with supmin=10%

item59: english(A)←s(A, B)∧vp(B, C)∧np(C, D)∧word(D, E)∧nn(E). (10.1%)
item67: english(A)←np(A, B)∧word(B, C)∧nn(C). (21.7%)
item68: english(A)←vp(A, B)∧np(B, C)∧word(C, D)∧nn(D). (11.5%)
item70: english(A)←np(A, B)∧word(B, C)∧dt(C). (19.0%)
item71: english(A)←np(A, B)∧word(B, C)∧nns(C). (11.9%)
item76: english(A)←s(A, B), np(B, C)∧word(C, D)∧np(D). (11.2%)
item77: english(A)←word(A, B)∧comma(B). (29.4%)
item78: english(A)←pp(A, B)∧word(B, C)∧in(C). (11.6%)
item80: english(A)←s(A, B)∧np(B, C)∧word(C, D)∧nn(D). (12.3%)
item81: english(A)←s(A, B)∧vp(B, C)∧word(C, D)∧vbd(D). (16.2%)
item82: english(A)←s(A, B)∧np(B, C)∧word(C, D)∧dt(D). (11.8%)
item85: english(A)←vp(A, B)∧pp(B, C)∧word(C, D)∧in(D). (15.0%)
item87: english(A)←np(A, B)∧word(B, C)∧np(C). (17.8%)
item88: english(A)←vp(A, B)∧word(B, C)∧vbd(C). (29.6%)
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Fig. 2. Numbers of itemsets produced by Mapix using sampled examples

Table 8 shows runtime of Mapix using all/fair numbers of examples comparing
Warmr. Unfortunately Warmr does not produce complete enumeration within
a practical time for train and mutagenesis and we measured till level five. Mapix

performed in an enough short time. Mapix were superior to Warmr in speed
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Table 8. Run-time (sec.) of Mapix and Warmr

Bongard train
supmin= 30% 10% 5% 50% 30% 10%

Mapix (all exams.) 17.20 17.00 17.59 4.77 5.11 22.19
Mapix (fair exams.) 2.31 6.61 12.81 1.13 2.45 17.33
Warmr 0.05 0.32 0.86 *155.41 *441.92 *3182.30

mutagenesis English
supmin= 30% 10% 5% 5% 3% 1%

Mapix (all exams.) 181.20 183.38 184.91 25040 21770 22375
Mapix (fair exams.) 29.49 75.31 140.31 3868 4482 13883
Warmr *146.91 *500.82 *1813.96

The numbers with ∗ are results till level 5.

Table 9. Comparison of output patterns between Mapix and Warmr

East-west train Mutagenesis
common difference total common difference total

Mapix 2732 28351 30983 5176 139207 144383
(D1:27634+D2:617) (D1:138696+D2:511)

Warmr 3605 31199 34804 5176 4168 9343
(D1:6392+D2:24807) (D1:2029+D2:2138)

common = patterns equivalent to some patterns in the other.
difference = patterns produced alone. (see text for D1 and D2)

except Bongard. The use of fair number of examples had an advantage especially
with large datasets considering the result of Fig. 2.

Mapix is based on the assumption that an interesting property has the two-
part representation and gives up to extract other formulae. Then we examined
resulted patterns by Mapix compared to Warmr. Table 9 is the result. Patterns
produced for train and mutagenesis with supmin=10% are used. Mapix normally
prunes tautologyish items but they were left included here because Warmr does
not exclude tautologyish conditions. Note that patterns by Warmr were till
level five. The table shows numbers of the patterns classified to a common part
and a difference. Common patterns are ones whose equivalent counterparts are
produced by the other system in the sense of ∼. Difference is the other patterns.

The number of common patterns must be the same if systems produce no
duplication. In mutagenesis the numbers are coincident but differ in train. Indeed
Warmr produced duplication, such as p(X, Y ) ∧ q(Y ) and p(X, Y ) ∧ p(X, Z) ∧
q(Z). This is because Warmr’s top-down search has to visit such patterns. In
train examples Mapix produced total 30983 patterns and Warmr 34804. The
difference was approximately 90%. While Warmr − Mapix is resulted from
the limited form of Mapix’s property itemsets, the deep level search causes
Mapix−Warmr. In mutagenesis dataset the part Mapix−Warmr was very
large, which does not include any duplication and caused by deep level.
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In the table D1 and D2 are further divisions of differential part. D1 is the
number of patterns which are not logically equivalent to any pattern of the
other system but have the same cover set of a pattern of others and subsume or
are subsumed by it. D2 is the number of other patterns, i.e. produced alone and
absolutely different patterns from ones of the other.

In both datasets Mapix had large numbers in D1 and small in D2. On the
other hand Warmr had relatively large numbers in D2. This means that Mapix

had left patterns found by Warmr untouched, while Warmr could not go deep.

6 Conclusions

This paper proposed a bottom-up relational pattern mining algorithm Mapix. It
performed in a practical runtime with the four datasets. The speed-up is brought
by the assumption of the two-part representation of property items and the fact
that the cover set of itemsets is the intersection of items’, as well as the bottom-
up item extraction. In the sense of logical equivalence duplicated patterns are not
produced. Mapix uses sampled examples and the fair numbers of examples are
enough to produce all frequent itemsets in large probability, although it is not
theoretically assured. Although we convince the adequateness of two-part form,
it need improve the other point. Itemsets are treated as independent items, and
so variables in an item are not shared with other items. Bottom-up approaches
to treat formulae for items sharing variables will be an important research issue.
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Abstract. Probabilistic Logic Learning (PLL) aims at learning proba-
bilistic logical frameworks on the basis of data. Such frameworks combine
expressive knowledge representation formalisms with reasoning mecha-
nisms grounded in probability theory. Numerous frameworks have al-
ready addressed this issue. Therefore, there is a real need to compare
these frameworks in order to be able to unify them. This paper pro-
vides a comparison of Relational Markov Models (RMMs) and Bayesian
Logic Programs (BLPs). We demonstrate relations between BLPs’ and
RMMs’ semantics, arguing that RMMs encode the same knowledge as
a sub-class of BLPs. We fully describe a translation from a sub-class of
BLPs into RMMs and provide complexity results which demonstrate an
exponential expansion in formula size, showing that RMMs are less com-
pact than their equivalent BLPs with respect to this translation. The
authors are unaware of any more compact translation between BLPs
and RMMs. A full implementation has already been realized, consisting
of meta-interpreters for both BLPs and RMMs and a translation engine.
The equality of BLPs’ and corresponding RMMs’ probability distribu-
tions has been proven on practical examples.

1 Introduction

1.1 Motivations

Probabilistic Logic Learning (PLL) [3] is considered as one of the main emerg-
ing areas in Machine Learning. This topic is particularly of interest because PLL
is needed to tackle real-world learning and data mining problems in which the
data are complex and heterogeneous. Gaining a deeper knowledge of the relation-
ships between PLL formalisms is now widely considered as essential. Applying
comparisons between frameworks would allow to develop general results on the
expressive power, the semantics, the complexity and the efficiency of inference
and learning of these frameworks. So far, the following translations have been
studied ([4], [5], [15] and [17]). However, each new comparative study facilitates
a more coherent view of the interrelationships between PLL formalisms.

Moreover, a practical complexity comparison of four PLL formalisms contain-
ing Bayesian Logic Programs (BLPs) and Relational Markov Models (RMMs),
based on a version of the game of Blackjack, has already been made and is fully
described in [10]. The same game is represented with respect to the different

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 351–365, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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frameworks. By varying several parameters of the game and analyzing the con-
sequences on the representations, one can observe the differences of expressivity
and complexity between the formalisms. Therefore, we considered it useful to
determine whether the results obtained for this comparison would correspond
to the implementation of a general translation and its application to several
examples including the Blackjack example itself.

The choice of the two frameworks, BLPs and RMMs (described respectively
in [7] and [1]) has been motivated by several arguments. Firstly, these two frame-
works have been widely used by the community and have already provided signif-
icant results, as was stated in [2]. However, they are more or less efficient in terms
of the applications studied. Therefore it could be useful to translate from one
framework to another depending on the application. Secondly, it is convenient
to consider a framework that has already been compared to other formalisms, in
order to be able to directly link the findings of this study to the previous ones.
In addition, it is useful to consider a formalism that has never been compared
to another framework. Finally, it is of interest to consider a framework (BLP)
which, as cited in [3], integrates “probabilistic models with very expressive rela-
tional representations or even logic programs” to another one (RMM), which is
“typically less expressive” and to examine the validity of such a statement. The
general idea is to analyse if it is possible to constitute classes of PLL formalisms
with respect to their underlying representations and study if the frameworks
in those classes would share the same characteristics in terms of efficiency of
inference and learnability.

1.2 Outline

Section 2 consists of presenting the two PLL formalisms (BLPs and RMMs)
syntax and semantics. We assume some familiarity with logic and probabilities.
Section 3 is dedicated to the translation of a sub-class of BLPs, called BLPF ,
to RMMs. In Sect. 4, we also prove formally that the two representations are
semantically equivalent. Then, we compare the complexity of the representa-
tions and show that RMM are less compact than BLPs with respect to this
translation. Section 5 presents the implementation of the previous translation.
Firstly, the meta-interpreters associated with the two frameworks are presented.
The translation engine itself is introduced. The translation is illustrated by the
study of an example. Section 6 provides links with related works. Finally, the
conclusion (Sect. 7) summarizes the results and suggests directions for future
work.

2 Background

2.1 Bayesian Logic Programs (BLPs)

Syntax. This framework has been introduced in 2000 by Kersting and De Raedt
in [7]. It extends both Logic Programs [9] and Bayesian nets [13]. As defined in [7],
a BLP consists of 2 components: a logical one (which is a set of Bayesian clauses)
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and a quantitative one, which contains conditional probability tables (CPTs) and
combining rules. A Bayesian (definite) clause is an expression of the form:

A | A1, . . . , An.

All the Ai are Bayesian atoms and are universally quantified. Bayesian atoms
are assigned a finite domain, instead of binary values for logical atoms. Note that
in Bayesian clauses “|” is employed instead of “ : − ”. Each Bayesian clause C
is associated with a conditional probability distribution cpd(C) which encodes

P(head(C) | body(C)) .

The conditional probability distributions are represented in CPTs. Combining
rules are used when there are many clauses with the same head. They are func-
tions which map finite sets of conditional probability distributions onto one
combined conditional probability distribution. The noisy-or rule, when domains
are boolean, and the max rule are common combining rules. Let B be a BLP. N
denotes the number of clauses in the BLP. NP denotes the number of predicates
in the BLP. Considering a predicate r, Dr denotes the finite domain associated
to r. We will denote the set of all random variables (i.e. parents) that directly
influence a variable A by Pa(A).

Semantics. Let LH(L) be the least Herbrand model1 associated with the BLP.
The set of ground Bayesian atoms in the least Herbrand model together with
the structure defined by the set of ground instances of the Bayesian clauses and
the conditional probability tables, define a global (possibly infinite) Bayesian
network that can be queried like any other Bayesian net2.

Thus the query-answering procedure actually consists of two parts: first, given
a ground query and some evidence, the Bayesian network containing all relevant
atoms is computed, using KBMC (Knowledge Based Model Construction). Then
the resulting Bayesian network can be queried using any available inference algo-
rithm, the results we were looking for being the probability of the initial ground
query over its domain. Further details about the query-answering procedure can
be found in [7]. KBMC is thoroughly detailed in [8]: from a general point of view,
first-order rules with associated probabilities are used to generate Bayesian net-
works for particular queries. As in SLD-resolution, queries are matched to the
heads of rules, but in KBMC this results in nodes representing ground facts be-
ing added to a growing (directed) Bayesian network. Once the Bayesian network
is built it is then used to compute the probability that the query takes some
value on its domain.

2.2 Relational Markov Models (RMMs)

Syntax. This framework has been introduced in 2002 by Anderson et al in
[1]. It upgrades the notion of Markov Models ([16]). Let us briefly introduce
1 We define the least Herbrand model of a BLP in the same way as in logic programs.
2 Bayesian networks are formally defined only for finite sets of chance nodes; this point

of view is put forward because it provides a better idea of the relations between BLPs
and Bayesian nets.
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the concept of (propositional) Markov Models (PMMs). As described in [1],
“a first-order Markov model is a model” of a “discrete system that evolves by
randomly moving from one state to another at each time step”. This type of
model “assumes the probability distribution over the next state only depends on
the current state (and not the previous ones)”. Formally, a first-order Markov
model is a triple (Q, A, π). Q = {q1, q2, . . . , qn} denotes a set of states. A is the
transition probability matrix ; it encodes the probabilities of transiting from one
state to another. The element aij of A equals thus to aij = P (St = qj | St−1 = qi)
where St denotes the current state of the system at the time t. Similarly to A,
π is the initial probability vector, where πi = P (S0 = qi) is the probability that
the initial state is qi. But, in such a model, as mentioned in [1], “each state is
an atomic entity and there is no notion of types of states”.

In RMMs, the notion of type of states is added. States of the same type are
grouped together. States are classified using relations. More formally, an RMM
is a five-tuple 〈D, R, Q, A, π〉, for which D is a set of domains. A domain is a
tree, which represents an abstraction hierarchy of values. The leafs of a tree are
the ground values. R is a set of relations. Each argument of a relation takes
values from the nodes of a single domain in D. Q is the set of states as for a
propositional Markov model, yet each state must be a ground instance of one
of the relations in R. A and π are defined exactly the same way as above. As
stated in [1], “in the case of finite domains, RMMs are no more expressive than
PMMs. The advantage of RMMs lies in the additional support for learning and
inference that the relational structure provides”.

Semantics. Given an RMM, the probability of observing a sequence of states
(st0, st1, . . . , stI−1) is P (St0 = st0, . . . , StI−1 = stI−1) = P (St0 = st0) ×∏I−1

t=1 P (Stt = stt | Stt−1 = stt−1). As stated in [1], “Given a set of observed
sequences, the maximum-likelihood estimate of an initial probability πi is the
fraction of sequences that start in state qi, and the maximum-likelihood estimate
of a transition probability aij is the fraction of visits to qi that are immediately
followed by a transition to qj”.

3 Translation

In this section, we will describe a translation which takes as input any BLP
belonging to a subset of BLPs called BLPF (defined in the next subsection) and
returns an equivalent RMM. The algorithm BLP2RMM (Fig. 1) implements this
translation and will also be detailed. The equivalence of the two representations
(and therefore the soundness of the translation) will be proven in Sect. 4.

3.1 Restrictions

Definition 1. (Acyclic) A BLP is said to be acyclic if the influenced by rela-
tion over LH(L) is acyclic.
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Definition 2. (Acyclic Finitely Influenced) A BLP B is said to be acyclic
finitely influenced if B is acyclic and each random variable in LH(L) is only
influenced by a finite set of random variables.

Definition 3. (BLPF ) B ∈ BLPF if B is an acyclic finitely influenced BLP
and the least Herbrand model LH(L) is finite.

In the following translation, we will only consider BLPs belonging to BLPF .
This restriction is necessary for both syntactic and semantic purposes. Indeed,
we cannot allow for an infinite BLP, because we consider that it could not be
represented by an RMM since we consider that an infinite RMM is incompatible
with the definition of an RMM given in [1].

3.2 Preliminary Results

Definition 4. Given a BLP noted L and a subset of LH(L) noted Γ . TBL

is defined as follows. TBL(Γ ) = {Aθ | there is a substitution θ and a clause
(A | A1, . . . , An) in L such that (Aθ | A1θ, . . . , Anθ) is ground, for all i ∈
{1, . . . , n} : Aiθ ∈ Γ , and Pa(Aθ) ⊆ Γ}.

TBL will be used in the algorithm BLP2RMM.

Definition 5. Let V be a ground atom in L. We denote by DV the domain Dr,
with r predicate from which V is obtained (i.e. V = r(. . .)).

The following proposition enables to express the joint probability density of
random variables, which will be useful in Sects. 3 and 4.

Proposition 1. Let X1, . . . , Xn be random variables. The joint probability den-
sity of these variables can be expressed with its chain rule expression

P(X1, . . . , Xn) =
n∏

i=1

P(Vi | V1, . . . , Vi−1) . (1)

If, for all i ∈ 1, . . . , n, there is no variable Vj, for all j ∈ 1, . . . , i− 1, that is
influenced by Vi, then the following equation can be derived from (1):

P(X1, . . . , Xn) =
n∏

i=1

P(Vi | Pa(Vi)) . (2)

This is namely the case if the variables are ordered with respect to when they
are entailed (as it will occur during the translation).

Proposition 2. We have the following result:

P(V1, . . . , VM , VM+1, . . . , VM+Nn | V1, . . . , VM ) =
Nn∏

i=1

P(VM+i | Pa(VM+i)) .

(3)
If the parents of a random variable VM+i come from more than one Bayesian
clause, we use the combining rule associated with the predicate from which is
obtained the random variable.
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Proof.
P(V1, . . . , VM , VM+1, . . . , VM+Nn | V1, . . . , VM ) =

P(V1, . . . , VM , VM+1, . . . , VM+Nn , V1, . . . , VM )
P(V1, . . . , VM )

=

P(V1, . . . , VM , VM+1, . . . , VM+Nn)
P(V1, . . . , VNM )

=

(∏Nn

i=1 P(VM+i | V1, . . . , VM+i−1)
)
×P(V1, . . . , VM )

P(V1, . . . , VM )
=

Nn∏

i=1

P(VM+i | V1, . . . , VM+i−1) =

Nn∏

i=1

P(VM+i | Pa(VM+i)) .

$%

3.3 Translation Algorithm

The translation algorithm BLP2RMM is presented in Fig. 1. The general idea
is to follow the calculation of the least Herbrand model and to create relevant
corresponding RMM states. Each RMM state will represent exactly one interpre-
tation of a sub-set of LH(L) consisting of all the ground atoms already entailed
by an operator similar to the TP operator used for Logic Programs. Indeed, at
each iteration of this operator, a set of new ground atoms is entailed and RMM
states are created, each state corresponding to an interpretation of the set con-
taining all the ground atoms already entailed by the iterations of the operator
(i.e. interpretations of the new ground atoms added to the previous interpreta-
tions of the previously entailed ground atoms). Each state q created at iteration
i is accessible from a unique state q′ created at iteration i− 1 and corresponds
to the interpretation of q restricted to the ground atoms defined in the i−1 iter-
ations of the algorithm. The states accessible from q are all the states created in
the i + 1 iterations that corresponds to a compatible interpretation. The proba-
bilities of the RMM are all deduced form the CPTs of the BLP. The algorithm
ends when all the ground atoms of the least Herbrand model have been entailed.

The algorithm ends when the least fixpoint of TBL is reached. At this point,
all the ground atoms of LH(L) have already been entailed and the corresponding
RMM is complete. This means that the states created in the last step are final
states (they are not the source to any state in the RMM). Let I be the number
of steps necessary for the algorithm (the fixpoint is reached in an attempt to
apply the operator for the (I + 1)th time). The following subsections refer to
more detailed explanations of the translation.
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Algorithm: BLP2RMM
Input: L ∈ BLPF

Output: R ∈ RMM

1. Set n = 0
2. While the least fixpoint of TBL is not reached

(a) Define Sn =TBL
n(∅)

(b) Define the new Bayesian atoms entailed, noted VM+1, . . . , VM+Nn , where M =�n−1
j=1 Nj is the number of atoms previously entailed

(c) For each VM+i(= rM+i(. . .)), where i ∈ [1, Nn]
i. Define the RMM domain, DVM+i = D′

rM+i
, where D′

rM+i
is a tree with a

root pointing towards |DrM+i | leafs, where DrM+i is the predicate domain
associated to rM+i; each leaf being an element of DrM+i

(d) Define the RMM relation Ln(DV1 , . . . , DVM , DVM+1 , . . . , DVM+Nn
)

(e) Define the RMM states Ln(v1, . . . , vM , vM+1, . . . , vM+Nn), where vi ∈ DVi for
all i ∈ {1, . . . , M + Nn}

(f) For each state q = Ln−1(v1, . . . , vM ), where vi ∈ DVi for all i ∈ {1, . . . , M}
i. Set one transition from q towards each state

Ln(v1, . . . , vM , vM+1, . . . , vM+Nn),∀(vM+1, . . . , vM+Nn) ∈ (DVM+1 ×
. . . × DVM+Nn

), with the probability
�Nn

i=1 P (VM+i = vM+i | Pa(VM+i))
(g) Increment n

Fig. 1. Algorithm BLP2RMM translating any L ∈ BLPF to an equivalent RMM

Step 1. Let us consider the set S1 =TBL(∅). We denote the variables contained
in S1 by V1, . . . , VN1 . Therefore N1 = |S1|. In other words, S1 contains the ground
facts Vi for which Pa(Vi) = ∅. From these variables, we create a RMM domain
for each distinct predicate domain in DV1 , . . . , DVN1

. The RMM domain D′ asso-
ciated to a predicate domain D is a tree with a root pointing to |D| leafs that are
the elements of D. In addition, we create the RMM relation L1(DV1 , . . . , DVN1

).
∏N1

i=1 |DVi | states are created. The number of states equals to the size of the
cartesian product of DV1 , . . . , DVN1

. A state q obtained from this relation has
the form q = L1(v1, . . . , vN1), where vi ∈ DVi for all i ∈ {1, . . . , N1}.

Being in state q means that an interpretation of the N1 first entailed variables
of LH(L) is set and is as follows. V1 = v1, . . . , VN1 = vN1 . These states are the
only possible initial states in the RMM with the following probabilities:

Pπ(St0 = L1(v1, . . . , vN1)) = P (V1 = v1, . . . , VN1 = vN1)

=
N1∏

i=1

P (Vi = vi | V1 = v1, . . . , Vi−1 = vi−1)

=
N1∏

i=1

P (Vi = vi | Pa(Vi) assigned like above)
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= V

N1∏

i=1

P (Vi = vi) .

Thus, the RMM initial probability vector π is defined as follows.

πL1(v1,...,vN1) =
N1∏

i=1

P (Vi = vi), ∀(v1, . . . , vN1) ∈ DV1 × . . .×DVN1

πq = 0 else .

Step n. We continue to apply the TBL operator in order to entail new ground
atoms and consequently to create new domains, new relations, new states and
new transitions between states created during the last two steps. We now present
the additions made to the current RMM during Step n. Let M be

∑n−1
j=1 Nj . Let

us consider the set Sn =TBL(Sn−1). We denote the variables contained in Sn

by VM+1, . . . , VM+Nn . Therefore Nn = |Sn| − |Sn−1|. From the new variables,
we create a RMM domain for each new distinct predicate domain (with respect
to the domains already defined) in DVM+1 , . . . , DVM+Nn

. The associated RMM
domains are created in the same fashion as in the previous steps. We create
the RMM relation Ln(DV1 , . . . , DVM , DVM+1 , . . . , DVM+Nn

). A state q obtained
from this relation Ln has the form q = Ln(v1, . . . , vM , vM+1, . . . , vM+Nn), where
vi ∈ DVi for all i ∈ {1, . . . , M + Nn}. Being in this state q means that an
interpretation of the M+Nn first entailed variables (i.e. ground atoms) of LH(L)
is set and is as follows. V1 = v1, . . . , VM = vM , VM+1 = vM+1, . . . , VM+Nn =
vM+Nn . The state q is only accessible from q′ = Ln−1(v1, . . . , vM ). Semantically,
it means, that if we have set an interpretation for the first M variables, this “sub-
interpretation” cannot be modified and we can subsume this interpretation by
assigning values to the Nn new entailed variables. Therefore, a state created in
Step n− 1, for instance q′, is now pointing towards

∏Nn

i=1 |DVM+i | states (of the
form Ln(v1, . . . , vM , vM+1, . . . , vM+Nn) for all (vM+1, . . . , vM+Nn) ∈ DVM+1 ×
. . .×DVM+Nn

). By applying Proposition 2, the probabilities of the translations
defined above are

P (Stn−1 = Ln(v1, . . . , vM , vM+1, . . . , vM+Nn) | Stn−2 = Ln−1(v1, . . . , vM )) =
Nn∏

i=1

P (VM+i = vM+i | Pa(VM+i) assigned accordingly) .

We can now continue the construction of the transition probability matrix A.
∀(v1, . . . , vM ) ∈ DV1 × . . .×DVM , the following states are created (with qn−1 =
Ln−1(v1, . . . , vM ) and qn = Ln(v1, . . . , vM , vM+1, . . . , vM+Nn)):

aqn−1qn−2 =
Nn∏

i=1

P (VM+i = vM+i | Pa(VM+i) assigned accordingly),

∀(vM+1, . . . , vM+Nn) ∈ DVM+1 × . . .×DVM+Nn
.

The states created in Step n−1 will point towards no other further states created
in the algorithm.
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4 Results

4.1 Semantics

Theorem 1. (Equivalence) Let B ∈ BLPF and R ∈ RMM obtained by apply-
ing the algorithm BLP2RMM defined in Sect. 3 to B. The probability distribu-
tions over two corresponding representations are equivalent. We have, for every
RMM State and every BLP joint state:

P (St0 = st0, . . . , StI−1 = stI−1) =
|LH(L)|∏

i=1

P (Vi = vi | Pa(Vi)) . (4)

Proof. Each state in the RMM represents an interpretation of a subset of LH(L).
Therefore, the final states represent all the possible interpretations of LH(L) (as-
signment of values to the random variables in LH(L)). The final states are of
the form LI(v1, . . . , v|LH(L)|), ∀(v1, . . . , v|LH(L)|) ∈ DV1×. . .×DV|LH(L)| . Accord-
ing to [1], “the probability of observing a sequence of states (st0, st1, . . . , stT )
is P (St0 = st0, St1 = st1, . . . , StT = stT ) = P (St0 = st0)

∏T
t=1 P (Stt = stt |

Stt−1 = stt−1)”. In this case, for T = (I − 1), the probability of observing
such a sequence should be the probability of having the interpretation of LH(L)
induced by stI . And, in our RMM, the elements in such a sequence are not in-
dependent one to each other (st(I−1) induces the values of all the other vi, for
1 ≤ i ≤ (I − 2)). Let us verify that these two semantical probabilities are the
same. That would prove that the BLP and the associated RMM have the same
semantics over the interpretations of LH(L). Let stI−1 = LI(v1, . . . , v|LH(L)|),

P (St0 = st0, . . . , StI−1 = stI−1) =

P (St0 = st0)
I−1∏

t=1

P (Stt = stt | Stt−1 = stt−1) =

P (S0 = L1(v1, . . . , vN1))×

×
I∏

i=2

P
(
Li

(
v1, . . . , v(�I

j=1 Nj)
)
| Li−1

(
v1, . . . , v(�I−1

j=1 Nj)
))

=

(
N1∏

i=1

P (Vi = vi)

)⎛

⎝
I∏

i=2

⎛

⎝
Ni∏

j=1

P
(
V(�i−1

k=1 Nk+j) | Pa(V(�i−1
k=1 Nk+j))

)
⎞

⎠

⎞

⎠ .

In the last expression, all the Pa
(
V(�i−1

k=1 Nk+j)
)

are assigned according to the
previous expressions and namely to the assignment in stI−1. Eventually, the
following equation is obtained:

P (St0 = st0, . . . , StI−1 = stI−1) =
|LH(L)|∏

i=1

P (Vi = vi | Pa(Vi)) .

(The Pa(Vi) are assigned according to the previous expressions ∀1 ≤ i ≤
|LH(L)|). $%
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4.2 Complexity

In this subsection, we will try to compare the size of the two equivalent repre-
sentations of a same problem in terms of relevant parameters of these represen-
tations. The following theorem emphasizes the exponential explosion in terms of
parameters of the representation that occurs when translating BLPF to RMMs.
The proof of this theorem is fully described in [11].

Definition 6. (Minimal RMM) Let MinRMM (L) be the minimum number
of parameters in any RMM representation of a BLP L. By definition,

MinRMM (L) ≤ ParRMM (L) . (5)

Theorem 2. (Complexity) Let L be a BLPF and M be the RMM obtained by
applying the translation detailed in Sect. 3 to L. Let N be the number of clauses of
L. Let Dmax = maxr |Dr|, where r is a predicate and Dr its associated domain.
Let ParBLP (L) be the number of parameters in the CPTs of L. Let ParRMM (M)
be the number of parameters in the transition matrix and vector of M . We have:

ParBLP (L) = O(N Dmax) , (6)

ParRMM (M) = O
(
N2 ×

(
(Dmax)(2|LH(L)|×N)

))
, and (7)

MinRMM (L) ≤ O
(
N2 ×

(
(Dmax)(2|LH(L)|×N)

))
. (8)

Proof. N is the number of clauses and of CPTs and NP is the number of
predicates. For each Bayesian clause A | A1, . . . , An, there is one CPT of size
DA× DA1 × . . .× DAn . Therefore the total number of parameters in the CPTs
is

ParBLP =
N∑

i=1

(|DA| × |DA1 | × . . .× |DAn |) .

There are I relations, NP domains of the size of the BLP domains Dr, ∀ predicate
r. According to Sect. 3, the number of states is

NSt =
I∑

i=1

⎛

⎝
i∏

j=1

⎛

⎝
Nj∏

k=1

|DVN(j−1)+k
|

⎞

⎠

⎞

⎠ .

Therefore π has NSt parameters and A has (NSt)2 parameters. The total number
of parameters in the matrix and vector is

ParRMM =
(
NSt + (NSt)2

)
.

Here, we try to find upper bounds of ParBLP and ParRMM with respect to
the same variables. We choose N as our variable to obtain upper bounds. Let
Dmax = maxr predicate |Dr|. We can state that NP = O(N) since, for each
predicate, there exists at least one clause in which this predicate is present in
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the clause’s head. Concerning the BLP representation, the following result is
straightforward:

ParBLP = O(N Dmax) .

Concerning the RMM representation, we have I = O(N), because at each iter-
ation of TBL we use at least one Bayesian clause to entail new ground atoms.
Let us obtain an upper bound for ParRMM :

ParRMM =
(
NSt + (NSt)2

)

= O
(
(NSt)2

)

= O

⎛

⎜
⎝

⎛

⎝
N∑

i=1

⎛

⎝
i∏

j=1

⎛

⎝
|LH(L)|∏

k=1

|DVN(j−1)+k
|

⎞

⎠

⎞

⎠

⎞

⎠

2
⎞

⎟
⎠

= O

⎛

⎜
⎝

⎛

⎝
N∑

i=1

⎛

⎝
N∏

j=1

⎛

⎝
|LH(L)|∏

k=1

Dmax

⎞

⎠

⎞

⎠

⎞

⎠

2
⎞

⎟
⎠

= O

⎛

⎜
⎝

⎛

⎝
N∑

i=1

⎛

⎝
N∏

j=1

(Dmax)|LH(L)|

⎞

⎠

⎞

⎠

2
⎞

⎟
⎠

= O

⎛

⎝

(
N∑

i=1

(Dmax)(|LH(L)|×N)

)2
⎞

⎠

= O

((
N ×

(
(Dmax)|(LH(L)|×N)

))2
)

= O
(
N2 ×

(
(Dmax)(2|LH(L)|×N)

))
.

Eventually,
ParRMM = O

(
N2 ×

(
(Dmax)(2|LH(L)|×N)

))
.

$%

5 Implementations

After having studied the translation theoretically in Sects. 3 and 4, we will now
present an implementation of this translation. Firstly, the meta-interpreters as-
sociated with the two frameworks whose role is to infer the probability associated
to a query are described. Then we will introduce the translation engine itself. The
equality of the probability distributions of the two equivalent representations is
also stated.
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5.1 BLP Meta-interpreter

This subsection is dedicated to the BLP formalism. It is necessary to be able to
query BLPs in order to check the results. The KBMC is straightforward, thus it
is not necessary to implement this stage. To query the resulting Bayesian net,
we use free softwares such as Microsoft Belief Network. BLPs will be represented
using a Prolog formalism. We will use a simplification of the alarm example to
illustrate this formalism - this example can be found in [14].

blp_clause(1, alarm(X),[burglary(X),tornado(X)]).
blp_clause(2,burglary(Y),[neighborhood(Y)]).
blp_clause(3,neighborhood(_),[]).
blp_clause(4, tornado(_),[]).

blp_cpt( 1,
[yes,no],[[yes,yes],[yes,no],[no,yes],[no,no]],
[[0.99,0.8,0.9,0.05],[0.01,0.2,0.1,0.95]]).

blp_cpt( 2,
[yes,no],[[bad],[avg],[good]],
[[0.4,0.2,0.1],[0.6,0.8,0.9]]).

blp_cpt( 3,
[bad,avg,good],[],
[0.3,0.4,0.3]).

blp_cpt( 4,
[yes,no],[],
[0.01,0.99]).

A BLP can also be defined with the use of combining rules, in which case the
following type of predicate may be added at the end of the program:

blp_cr(alarm,max).

where the first argument is the predicate which is defined with a combining rule
and the second is the combining rule itself. We assume that every combining rule
used to define a BLP is already defined in the translation engine. The Bayesian
clauses are defined with the atoms whose predicate symbol is blp clause. The
first argument is a unique identifier of the clause, the second is the head and the
third is the body of the Bayesian clause. The associated conditional probability
tables are defined by the blp cpt atoms: the first argument is the number of
the associated clause, the second lists the domain (i.e. the possible values) of
the head, the third lists the possible sets of values that the body can take.
Eventually, the values of the probabilities are represented by a list of lists: for
each possible value of the head, there is a list of conditional probabilities given
the set of values that the body can take.

5.2 RMM Meta-interpreter

This subsection is dedicated to the RMM framework. An RMM has the fol-
lowing semantics. Given an RMM, the probability of observing a sequence of
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states (st0, st1, . . . , stI−1) is P (St0 = st0, . . . , StI−1 = stI−1) = P (St0 = st0)×∏I−1
t=1 P (Stt = stt | Stt−1 = stt−1). The Prolog representation of any RMM will

be as follows. An RMM is constituted by a set of RMM states

rmm_state(1,l(1,(neighbourhood(james),bad),(tornado(james),yes))).
rmm_state(2,l(1,(neighbourhood(james),bad),(tornado(james),no))).
...

where the first argument is the unique identifier of the state, and the second
is the usual definition of an RMM state; a set of predicates defining the initial
probability vector

rmm_init_vector(1,0.002). rmm_init_vector(2,0.198).
...

where the first argument is the identifier of an RMM state and the second ar-
gument is the probability that this state is the initial state; and finally, a set of
transitions defining the transition probability matrix.

rmm_trans_matrix(1,7,0.6). rmm_trans_matrix(1,8,0.4).
...

where the first argument is the identifier of an RMM state, the second argument
is the identifier of an other state and the third argument is the probability that,
being in the first state, the system evolves into the second at the next step.

The meta-interpreter is then deduces quite intuitively:

rmm_proba([Initial_State],P):-
rmm_init_vector(Initial_State,P).

rmm_proba([Last_State|[New_Last_State|Rest_of_Sequence]],P) :-
rmm_proba_matrix(New_Last_State,Last_State,P1),
rmm_proba([New_Last_State|Rest_of_Sequence],P2),
P is P1*P2.

5.3 Translation Engine

The translation itself is implemented in the translation engine. Every combining
rule has to be implemented in the translation engine in order to simplify the
BLPs representations which only have to mention the combining rules to be
used. The full implementation of the translation defined in Sect. 3 is described
in [12].

5.4 Practical Equality of the Distributions

With respect to the examples we have studied to test the translation engine
so far, the theoretical equality of the distributions has been confirmed by the
meta-interpreters of the two equivalent representations.
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6 Related Works

As already mentioned, other relationships between PLL frameworks have been
investigated in [4], [5], [15] and [17]. Moreover, [6] “proposes the outlines of a gen-
eral, robust framework for comparing” probabilistic-logical (pl) models, in order
to “establish a general, robust framework for comparing pl-languages”, which is
an essential aim. Our findings could easily be adapted in order to be part of the
first few results that are mentioned in [6] and could increase the rapidity of po-
tential further results. The result at aim is that BLPs are as least as expressive as
RMMs. Again, it would be very interesting to analyse the links between the un-
derlying representations of a PLL formalism and its expressivity and learnability.

7 Conclusion and Future Work

In this paper, we have established a translation from the sub-class of BLPF to
RMMs. We have demonstrated that BLPF and RMMs could encode the same
knowledge. The complexity results have shown that RMMs are less compact than
BLPF with respect to this translation. The authors are unaware of any more
compact general translation. A full implementation has already been realized.
So far, all the complexity and expressivity results obtained are intuitive with
respect to the underlying representations of the PLL formalisms studied.

In the future, we would like to apply this translation to other examples such
as a game of poker. We could also try to optimize the implementation of the
translation engine. It would be very useful to obtain general complexity results
(independent of the translation utilized). We would then have to generalize the
comparison. It would also be of interest to adapt our results to the expressivity
frameworks described in [6].

More generally, we would like to continue to apply comparisons between
frameworks. It would be interesting to examine if a classification of PLL for-
malisms with respect to their underlying representations would correspond to
a classification in terms of expressivity and learnability. If it were the case, we
could then state for instance that the learnability of the formulaes of a PLL
representation would depend on the complexity of its formulaes. It would allow
us to set up general results on the expressive power, the complexity and the effi-
ciency of inference and learning. Even more generally, we would like to develop
an integrated theory of Probabilistic Logic Learning.

Acknowledgements. This work was supported by the Esprit IST project “Ap-
plication of Probabilistic Inductive Logic Programming II (APRIL II)”.
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Abstract. Determining the underlying regulatory mechanism of genetic
networks is one of the central challenges of computational biology. Nu-
merous methods have been developed and applied to the important
but complex task of reverse engineering regulatory networks from high-
throughput gene expression data. However, many challenges remain. In
this paper, we are interested in learning rules that will reveal the causal
genes for the expression variation from various relational data sources
in addition to gene expression data. Following our previous work where
we showed that time series gene expression data could potentially un-
cover causal effects, we describe an application of an inductive logic
programming (ILP) system, to the task of identifying important reg-
ulatory relationships from discretized time series gene expression data,
protein-protein interaction, protein phosphorylation and transcription
factor data about the organism. Specifically, we learn rules for predicting
gene expression levels at the next time step based on the available rela-
tional data and then generalize the learned theory to visualize a pruned
network of important interactions. We evaluate and present experimen-
tal results on microarray experiments from Gasch et al on Saccharomyces
cerevisiae.

1 Introduction and Motivation

Gaining insight into the underlying regulation of genes within organisms is im-
portant not just for understanding the cause of diseases but also for developing
treatments. Viruses have been shown to cause cancer by affecting normal regu-
lation in cells, and gaining an understanding of the factors that determine the
ability of embryonic stem cells to maintain their self-renewal and pluripotency
can significantly advance developmental biology and stem cell research.

For nearly a decade now, DNA microarray technology has enabled the simulta-
neous measurement of mRNA abundance of genes in an organism under normal
conditions or under various treatments or perturbations. However, microarray
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experiments still have many sources of error: sample preparation, hybridization,
scanning, image processing, normalization, etc. Because samples for microar-
ray data are usually obtained by pooling extracts from a population of cells
rather than a single cell, in addition to experimental variables and limitations of
the technology, the measurements obtained can be noisy. Noisy data inherently
makes it more difficult to reverse engineer the underlying regulatory network.

Despite the difficulty of deciphering genetic regulatory networks from microar-
ray data, numerous approaches to the task have been quite successful. Friedman
et al. [5] were the first to address the task of determining properties of the tran-
scriptional program of S. cerevisiae (yeast) by using Bayesian networks (BNs)
to analyze gene expression data. Pe’er et al. [18] followed up that work by using
BNs to learn master regulator sets. Other approaches include Boolean networks
(Akutsu et al. [1], Ideker et al. [11]) and other graphical approaches (Tanay and
Shamir [26], Chrisman et al. [3]).

The methods above can represent the dependence between interacting genes,
but they cannot capture causal relationships. Pe’er et al. [19] ingeniously pro-
posed the use of microarray experiments in which specific genes have been deleted
(knockout) in yeast to obtain causality. The use of perturbations such as gene
deletion mutants can allow the BN learning algorithm to learn a directed edge
that suggests direct causal influence. This approach of combining observational
and interventional data delivered promising results. Unfortunately, a complete
library of gene knockouts are not yet available for organisms other than yeast.
The advent of small interfering RNA (siRNA) can be used to reduce the expres-
sion of a specific gene in organisms other than yeast, however, siRNA does not
guarantee complete silencing of the gene. In our previous work [16], we proposed
that the analysis of time series gene expression microarray data using Dynamic
Bayesian networks (DBNs) could allow us to learn potential causal relationships
(Figure 1).

DBN learning can provide more insight into causality than ordinary BNs.
An induced arc from gene X1 to gene X2 in an ordinary BN simply means
that the expression of gene X1 is a good predictor of the expression of gene
X2 at the same time (Figure 2a). While this good prediction may be because
expression of gene X1 influences expression of gene X2, it could just as easily
be because expression of gene X2 influences expression of gene X1 or expression
of both gene X1 and gene X2 are influenced by expression of another gene X3

(Figure 2b). On the other hand, an induced arc from gene X1 to gene X2 in a
DBN implies that expression of gene X1 at one time slice is a consistently good
predictor of gene X2 at the next time slice. This good prediction is unlikely to
be because expression of gene X2 influences expression of gene X1; intuitively,
it seems likely to be because expression of gene X1 influences expression of
gene X2.1

1 An arc in a DBN does not establish causality definitively. Nevertheless, if a learned
DBN contains arcs that imply novel potential causal relationships, in some cases
biologists can test these novel relationships with additional, more focused (and time-
consuming) experiments.
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Fig. 1. Simple DBN model. Labeled circles within a dotted oval represent our variables
in one time slice. Formally, arcs connecting variables from one time slice to variables
in the next have the same meaning as in a BN, but they intuitively carry a stronger
implication of causality. We note that in a DBN with more time slices, the arcs are
always the same, e.g., the arc from X1 at time slice 1 to X2 at time slice 2 is also
present from time slice t to time slice t + 1 for all 1 ≤ t < T where T is the last time
slice in the model. This constancy of the arcs is justified by an assumption that the
process being modeled is stationary though not static. While values of variables may
change over time, the manner in which the value of one variable influences the value
of a variable at the next time step (i.e., the parents and the conditional probability
distribution for the latter variable) will not change.

Fig. 2. (a) X1 may be a good predictor of X2, but is X1 regulating X2? (b) Ground
truth might be any one of these or a more complicated variant

While temporal gene expression data contains causal information in the tem-
poral data sequence, the dependence on the appropriate sampling rate, the small
sample size, the large number of variables, and the presence of many hidden (sig-
naling and other molecular interactions for which we do not have measurements)
variables make it difficult for learning algorithms to completely determine the
network.
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In this paper, our goal is to utilize the abundant information available from
many years of low-throughput as well as recent high-throughput research that are
currently available in public databases to infer new relationships that cannot be
learned from expression data alone. We are interested in discovering whether ILP
is able to infer theories for particular pathways from time series microarray data
and use other known relational information about the organism to refine what
is already known about that pathway. Specifically, we formulate the learning in
the same way as a DBN by learning theories of gene expression that are good
predictors of the expression of particular genes at the next time step.

Regulatory sequences control gene expression temporally as well as spatially
by cis-acting elements and trans-acting factors. Cis-acting elements are DNA
sequences in the vicinity of the target gene, usually within 200 base pairs up-
stream of the transcription start site. Trans-acting factors, bind to the cis-acting
sequences to control gene expression in several ways: the factor may (1) be ex-
pressed temporally (specific times in life cycle), (2) be expressed spatially (in a
specific location), (3) require modification (phosphorylation), (4) be activated
by ligand binding, (5) be sequestered until an environmental signal allows it to
interact with the nuclear DNA. Hence, by integrating temporal gene expression
data with additional information such as protein-protein interaction, transcrip-
tion factor and kinase-substrate (phosphorylation) information, we believe we
can capture some of these causal relationships and underlying mechanisms.

2 Related Work

Our goal in this paper is similar to that of Tu et al. [28]. We are interested
in determining whether ILP can learn the pathway links between causal genes
and target genes that explain the regulatory relationships between them. In the
past few years, we have seen an increase in the use of inductive logic program-
ming (ILP) methods for learning functional genomics [24,13,2,20], metabolic
networks [25] and also predicting gene expression levels [17]. Papatheodorou et
al. [17] used Abductive logic programming (ALP) to learn rules that would ex-
plain how gene interactions can cause changes in gene expression levels.

Recently, Fröhler and Kramer [6], applied ILP to the task of predicting up- and
down-regulation of gene expression in S. cerevisiae under different environmental
stress conditions [8] with the use of additional information. Fröhler and Kramer
used the data from Middendorf at al. [14], where the presence of transcription
factor binding sites (pruned list of 354 after removing redundant and rare sites)
in the gene’s regulatory region and the expression levels of regulators (selected
list of 53, 50 of which were top ranking regulators identified by Segal et al. [21])
are used to predict gene regulation.

Following Middendorf, Fröhler and Kramer consider 3 classes of gene activity:
up-regulation (> 1.2), down-regulation (< -1.2), and no change. The up- and
down-regulated genes consist of 5% of all the data points since 95% of the
expression were unstimulated. Their results report on discriminating between
up- and down-regulation, with excellent results, although the original work from
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Middendorf’s showed that discriminating between the 3 classes is a much harder
task. We similarly discretize into 3 classes to reduce noise, but our up- and down-
regulated classes are about 20% of the total number of examples, so one would
expect the discrimination task in our case to be harder.

Our work differs from that of Fröhler and Kramer in four ways. First, we learn
rules to predict the up-regulation of a gene based on the activity and expression of
genes from the previous time step as in a DBN since we are interested in learning
causal relationships from the data. Secondly, we discretize the gene expression
data by comparing two consecutive time series measurements under the same
experimental condition and determining whether the change in expression was
up, down or same based on a threshold of greater than 0.3, less than -0.3, or
in between. Thirdly, we use information on transcription factors rather than
transcription factor binding sites and we do not restrict the transcription factor
or regulator set as our goal is to learn possible new players in the network.
Finally, we use Aleph instead of Tilde.

3 ILP and Aleph

Inductive logic programming (ILP) is a popular approach for learning first-order,
multi-relational concepts between data instances. ILP uses logic to induce hy-
potheses from observations (positive and negative examples) and background
(prior) knowledge by finding a logical description of the underlying data model
that differentiates between the positive and negative examples. The learned de-
scription is a set of easily interpretable rules or clauses.

There are many ILP systems available, but we chose to use Aleph [22] because
it has been shown to perform well even on fairly large datasets. This is because
Aleph implements the Progol algorithm [15], which learns rules from a pruned
space of candidate solutions. The Progol algorithm structures and limits the
search space in two steps. Initially, it selects a positive instance to serve as the
seed example and searches the background knowledge for the facts known to be
true about the seed example - the combination of these facts form the example’s
most specific or saturated clause. Then, Aleph defines the search space to be
clauses that generalize a seed example’s saturated clause, and performs a general
to specific search over this space. The key insight of the Progol algorithm is that
some of these facts explain the seed example’s classification, thus generalizations
of those facts could apply to other examples.

4 Data and Methodology

To test our hypotheses, we use time series gene expression data of environmen-
tal stress response experiments, including DNA-damaging agents from Gasch et
al. [8,7]. We chose to use this dataset on yeast because yeast is a model organism
used for studying many basic cellular processes and there exists many publicly
accessible databases containing various sources of data from many years of re-
search. We focused our study on the DNA damage checkpoint pathway because
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it is an important pathway that has been widely studied. There are about 6500
genes in yeast, 19 of which are considered to be in the “DNA damage checkpoint”
pathway based on a recent review by Harrison and Haber [10].

It is well known that a common problem with current microarray data is the
small number of sample points and the large number of features or genes. Nev-
ertheless, it is hoped that discretization as well as other sources of information
will permit useful results to be obtained. We determined the relative change in
expression from one time step to the next by comparing the expression levels
between two consecutive time series measurements. The time series data were
discretized into one of three possible discrete values by comparing two consec-
utive time series measurements: if the change increased by 0.3, we consider the
expression to be up-regulated, if the change decreased by 0.3, we consider the ex-
pression to be down-regulated, otherwise we say the expression stayed the same.

As alluded to earlier, there are many other spatial and molecular interactions
that are not captured by expression data. Known transcription factors for specific
genes can allow the learning algorithm to focus on specific proteins that are
known to interact with the DNA of the target gene. The learning algorithm
could also potentially discover combinations of transcription factors (pairs, trios,
etc.) required to trigger a change in expression of a particular set of genes.
Because transcription factors can also interact with other proteins or metabolites
on their way to activating gene expression, background knowledge of proteins
that are known to interact with each other can allow for the discovery of novel
proteins in the pathway. Furthermore, an estimated 30% of proteins need to be
phosphorylated in order to trigger a change in the protein’s function, activity,
localization and stability [12]. Thus, background knowledge about a large number
of protein phosphorylation in yeast was also included [4].

Recent technological advances have produced more high-throughput data that
capture different types of interactions. ChIP-chip (chromatin immunoprecipita-
tion, a well-established procedure to investigate interactions between proteins
and DNA, coupled with whole-genome DNA microarrays), technology allows
one to determine the entire spectrum of in vivo DNA binding sites for any
given transcription factor or protein. Mass spectrometry, large-scale two-hybrid
screens, single-cell analysis of flow cytometry, and protein microarrays have all
been used to generate high-throughput measurements of certain types of mole-
cules such as proteins, metabolites, protein-protein interactions and also sig-
naling events such as phosphorylation within cells. Most of these data are also
known to be noisy especially those obtained through high-throughput methods
that were conducted in vitro (outside the organism). High-throughput protein-
protein interaction and phosphorylation data are especially noisy because the
conditions under which the data are collected differs quite significantly from
that in a cell, i.e. detecting interactions that would not actually occur in vivo
(inside the organism) or missing interactions that actually take place.

We aim to link known interactions with gene expression activity to possibly
learn new mechanisms. We do this by associating the up- or down-regulation of
specific genes from the previous time step with its transcription factor, a protein
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Table 1. Cross validation accuracies

Fold 0 1 2 3 4 5 6 7 8 9 Average across all folds

Accuracy 0.73 0.87 0.81 0.72 0.83 0.84 0.73 0.79 0.75 0.78 0.79

it might interact with, or a phosphorylation event. We assume that an event in
the previous time step will contribute to the change in expression at the current
time. This assumption does not necessarily hold for all biological activity but a
similar assumption, that of using a gene’s expression level to approximate the
activity of other genes within the same pathway, have been used by others [29].

The MIPS Comprehensive Yeast Genome Database (CYGD) [9] provided
much of the information regarding yeast genes, their function, location, phe-
notype and disruption. We obtained protein-protein interaction data from Bi-
oGRID [23], transcription factor data from the YEASTRACT database [27], and
over 4000 yeast phosphorylation events from Ptacek et al. [4]. The ILP system,
Aleph [22], was used to learn rules from the data.

We first learn rules using inductive logic programming (ILP) to predict the
discretized gene expression level at the next time step as in a DBN. Then we use
the learned theory to generate a pruned network or graph that show interactions
corresponding to proofs for the rules.

5 Experiments and Results

We performed ten-fold cross validation experiments to learn theories for predict-
ing held-out gene expression values for genes in the DNA damage checkpoint
pathway at the next time step. The discretized microarray experiments were di-
vided into ten folds, grouping replicate experiments together to avoid bias, based
on the different experimental conditions.

We obtained an accuracy of 79% on predicting up-regulated examples aver-
aged over ten folds of the cross-validation procedure (see Table 1).

Examples of some of the rules learned across the folds are:

Rule 1 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt), interaction(tof1,GeneA),
up(tof1,Time1,Expt), function(GeneA,’CELL CYCLE AND DNA PROCE-
SSING:cell cycle:mitotic cell cycle and cell cycle control:cell cycle arrest’).

Rule 2 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt),
phosphorylates(GeneA,GeneE), up(GeneE,Time1,Expt),
transcriptionfactor(GeneF,GeneE), down(GeneF,Time1,Expt),
transcriptionfactor(GeneF,cdc20), down(cdc20,Time1,Expt).

Rule 3 up(GeneA,Time,Expt) :-
previous(Time,Time1), down(GeneA,Time1,Expt),
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interaction(GeneE,GeneA), down(GeneE,Time1,Expt),
interaction(GeneE,mms4), down(mms4,Time1,Expt),
function(GeneA,’METABOLISM’).

These rules all specify the activity of specific genes involved in the larger
DNA damage pathway. Tof1 is a subunit of a replication-pausing checkpoint
complex (Tof1p-Mrc1p-Csm3p) that acts at the stalled replication fork to pro-
mote sister chromatid cohesion after DNA damage, facilitating gap repair of
damaged DNA. Cdc20, which is regulated by cell-cycle genes, is an activa-
tor of anaphase-promoting complex/cyclosome (APC/C), which is required for
metaphase/anaphase transition. It is part of the DNA damage checkpoint path-
way and directs ubiquitination of mitotic cyclins, Pds1p, and other anaphase
inhibitors. Finally, Mms4 is a subunit of the structure-specific Mms4p-Mus81p
endonuclease that cleaves branched DNA and is involved in recombination and
DNA repair.

The learned rules prove examples, and proofs generate paths between genes,
so using the theories in all the folds, we further generated graphs. The graphs
only show links that can be used in proofs for at least 5 examples (train+test).
The width of a line in the graph is an indication of the proportion of examples
used in the proof. Note that the graph only displays literals that were used in
successful proofs. Hence, paths in the graph correspond to proofs and the nodes
are examples of literals which were used to prove the rules. The learned graph
of interactions amongst the 19 genes in the DNA damage checkpoint pathway
are shown in Figure 3. A more detailed graph showing interactions amongst the
genes in the DNA damage checkpoint pathway as well as transcription factors
and phosphorylators can be seen in Figure 4.

6 Discussion

The DNA damage checkpoint monitors genome integrity, and ensures that dam-
age is corrected before cell division occurs. When DNA damage is detected, the
checkpoint network transmits signals that stall the progression of the cell cycle
and mobilize repair mechanisms. The graph resulting from our analysis recapit-
ulates many of the central aspects of this signaling network, and connects that
network temporally to the normal progression through the cell cycle.

DNA damage (often in the form of a double strand break) is first recognized by
MRX, a protein complex consisting of Mre11, Rad50 and Xrs2. These proteins are
shown to interact together slightly to the left of the middle of Figure 4, with Mre11
linked to both Xrs2 and Rad50. The MRX complex coordinates the restructuring
of the damaged region. MRX stimulates the phosphorylation of histones, H2A,
in the region adjacent to the DNA double strand break (via Tel1) and recruits
an exonuclease to generate a stretch of single stranded DNA. Our graph does not
include physical interactions between Tel1 and the MRX complex, however both
are connected through Mec1 and through the DNA binding protein Rap1.Rap1
can act as an inducer or a repressor, and is active in many disparate elements of
cell biology, including ribosome synthesis and telomere preservation.
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Fig. 3. Learned graph of interactions from successful proofs amongst the 19 genes
in DNA damage checkpoint pathway from Harrison and Haber [10]. Straight edges
represent protein-protein interactions. The width of a line in the graph is an indication
of the number of examples that used this interaction in a proof.
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Fig. 4. Learned graph of interactions from successful proofs for the DNA damage
checkpoint pathway. Red nodes indicate one of the 19 genes in DNA damage check-
point pathway from Harrison and Haber [10], blue nodes indicate transcription factors
and green nodes kinases. Straight edges represent protein-protein interactions, solid
lined arrows represent transcription factor to target gene interaction, and dotted arcs
represent kinase to substrate phosphorylation. The width of a line in the graph is an
indication of the number of examples that used this interaction in a proof. A larger
figure can be found at: http://www.biostat.wisc.edu/˜ong/new2a.ps
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Once single stranded DNA is generated, it is bound by the heterotrimer repli-
cation protein A (RPA) and two things occur. First, Mec1/Ddc2 binds and
activates the signaling cascade. Mec1 phosphorylates Rad9 (shown as physical
interaction in the graph), which in turn recruits Rad53. Ddc2 is conspicuously
absent from this graph due to the requirement that only links that can be used
in proofs for a certain number of examples are displayed. Next, the 9-1-1 clamp,
which consists of three proteins Rad17, Mec3 and Ddc1, binds and demarcates
the ssDNA/dsDNA junction, and facilitates some of the interactions described
above. The 9-1-1 clamp components are grouped at the left side of the graph,
linked by protein-protein interactions.

At the heart of the signaling network is Rad53, a well-connected, essential
yeast kinase. Rad53 phosphorylates Dun1, a kinase whose activity ultimately
controls much of the transcriptional response to DNA damage. Dun1 is also a
very central protein in this network, demonstrating interactions with the 9-1-1
clamp, Rad24, the MRX complex, Rad53 and Pds1, a cell cycle control gene.
Finally, Rad53 signals cell cycle arrest through Pds1 (via Cdc20), and Cdc5.
Pds1 governs entry into mitosis, and Cdc5 controls exit from mitosis. All of
these interactions are present in our results.

DNA damage is an inevitable consequence of DNA synthesis, and the graph
reveals that the expression of the gene responsible for signaling the induction
of DNA repair genes (Dun1) is coordinated by two transcription factors (Swi4
and Mbp1) that are active in the period just before DNA synthesis begins.
Likewise, the transcription factors Mcm1, Fhk1 and Fkh2 are known to control
the transition from G2 to mitosis, and in our graph these TFs are linked to Cdc5,
Cdc20 and Pds1, which govern this transition.

At a broader level, the results shown in Figure 4 illustrates the centrality of
Rad9, Rad53 and Dun1. These genes are instrumental in coordinating the various
aspects of this response: detection of damage, cell cycle arrest, and mobilization
of repair mechanisms.

7 Conclusions and Future Work

As a first step, we concentrated our experiments on learning the DNA damage
checkpoint pathway because it is a very important pathway that have been im-
plicated in cancer and aging, and because it has been very well studied. This
pathway plays an important role by responding to single and double-stranded
DNA breaks, and is therefore often activated in stressful environments. Hence,
it involves a lot of signaling kinases that phosphorylates proteins that are al-
ready present within the cell or that only require molecular amounts to trigger
a response.

After performing our analysis, we found that the phosphorylation dataset from
Ptacek et al. [4] did not specifically include any phosphorylation relationships
for the kinase and substrates in the DNA damage checkpoint pathway. The
results we obtained show that our method is quite good at learning important
pathway interactions and regulators despite the fact that the data may be noisy
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or incomplete. This further emphasizes the utility of integrating different data
types, since many potential interactions, including those that were not evident
from single data sources were identified.

A possible next step will be to perform a comparison with DBNs. We could
also explore the larger network of genes that are connected with the core DNA
damage checkpoint genes by including more specific background knowledge. This
set is likely to include known targets of Dun1 activation, and genes that coordi-
nate the biological processes involved in cell division. It may also include genes
heretofore un-implicated in this process, and may provide good starting points
for future wet lab experimentation.

In the future, we also plan to study other pathways and organisms, incorporate
other sources of relational data including knockout data, and integrate these
networks with probabilistic models.
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Abstract. One promising family of search strategies to alleviate run-
time and storage requirements of ILP systems is that of stochastic local
search methods, which have been successfully applied to hard proposi-
tional tasks such as satisfiability. Stochastic local search algorithms for
propositional satisfiability benefit from the ability to quickly test whether
a truth assignment satisfies a formula. Because of that many possible so-
lutions can be tested and scored in a short time. In contrast, testing
whether a clause covers an example in ILP takes much longer, so that
far fewer possible solutions can be tested in the same time. Therefore in
this paper we investigate stochastic local search in ILP using a relational
propositionalized problem instead of directly use the first-order clauses
space of solutions.

1 Introduction

ILP has been successfully applied to a variety of tasks [12], [6]. Nevertheless,
ILP systems have huge time and storage requirements, owing to a large search
space of possible clauses. Therefore, clever search strategies are needed [13]. One
promising family of search strategies is that of stochastic local search methods.
These methods have been successfully applied to propositional tasks, such as
satisfiability, substantially improving their efficiency. Following the success of
such methods, a promising research direction is to employ stochastic local search
within ILP, to accelerate the runtime of the learning process. An investigation
in that direction was recently performed within ILP [22].
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Stochastic local search algorithms for propositional satisfiability benefit from
the ability to quickly test whether a truth assignment satisfies a formula. As a
result, many possible solutions (assignments) can be tested and scored in a short
time. In contrast, the analogous test within ILP—testing whether a clause covers
an example—takes much longer, so that far fewer possible solutions can be tested
in the same time. Therefore, motivated by both the success and limitations of
the previous work, we also apply stochastic local search to ILP but in a different
manner. Instead of directly applying stochastic local search to the space of first-
order Horn clauses, we use a propositionalization approach that transforms the
ILP task into an attribute-value learning task. In this alternative search space, we
can take advantage of fast testing as in propositional satisfiability. Our primary
aim in this paper is to reduce ILP run-time.

The standard greedy covering algorithm employed by most ILP systems is
another shortcoming of typical ILP search. There is no guarantee that greedy
covering will yield the globally optimal hypothesis; consequently, greedy cove-
ring often gives rise to problems such as unnecessarily long hypothesis with too
many clauses. To overcome the limitations of greedy covering, the search can
be performed in the space of entire theories rather than clauses. A strong argu-
ment against this larger search is the combinatorial complexity, giving us another
reason to transform the relational domains into propositional ones and to use
stochastic local search in the resulting, simpler search space. Therefore, our se-
condary aim in this work is to verify the benefits of a non-covering approach to
perform search in ILP systems.

In a recent work, a novel stochastic local search algorithm (SLS) was presented
to induce k-term DNF formulae. The SLS algorithm performs refinements on an
entire hypothesis rather than a single rule. A detailed analysis of SLS perfor-
mance compared to WalkSAT shows the advantages of using SLS to learn a
hypothesis as short as possible [15]. In this work we specifically investigate the
relevance of that SLS algorithm to learn k-term DNF formulae in relational
domains through propositionalization.

The outline of the paper is as follows. First, some background knowledge
related to propositionalization and Stochastic Local Search are reviewed in Sec-
tions 2 and 3, respectively. Then the proposal of this paper, SLS in ILP through
propositionalization and k-term DNF learning, is devised in Section 3.4. Before
concluding, some experimental results which validate our method are shown in
section 4.

2 Propositionalization

Propositionalization can be understood as a transformation method, where a re-
lational learning problem is compiled to an attribute-value problem, which one
can solve using propositional learners [9,7]. During propositionalization features
are constructed from the background knowledge and structural properties of in-
dividuals. Each feature is defined as a clause in the form fi(X) := Liti,1, ..., Liti,n
where the literals in the body are derived from the background knowledge and
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the argument in clause’s head refers to an individual as an example identifier.
The features are the attributes which form the basis for columns in single-table
(propositional) representations of the data. If such a clause defining a feature
is called for a particular individual and this call succeeds, the feature is set to
“true” in the corresponding column of the given example; otherwise it is set
to “false”. Recently several propositionalization systems have been proposed.
Examples include: RSD [21] and SINUS [8] among others. In the next section
we briefly review RSD since it is the propositionalization system used in the
experiments of our approach.

2.1 RSD

RSD is a system that uses propositionalization through first-order feature cons-
truction for discovering statistically interesting relational subgroups in a popu-
lation of individuals [21]1. RSD performs the following three stages in order
to propositionalize data: (1) identifies all first-order literal conjunctions that
by definition form a first-order feature, and at the same time comply to user-
defined mode-language constraints. Such features do not contain any constants
and the task can be completed independently of the input data; (2) employs
constants by copying certain features several times with some variables substi-
tuted to constants chosen from the input data. In this step irrelevant features are
also detected and eliminated; (3) generates a propositionalized representation of
the input data using the generated feature set. Such representation is a table
consisting of truth values of the first-order features computed for each example.

First-order feature construction. The feature language declarations accepted
to RSD are very similar to those used by Aleph [19] and Progol [11]. Thus, in the
declaration section the predicates that can appear in a feature are listed. A type
and a mode are assigned to each argument of these predicates. If two arguments
have different types they can not hold the same variable. A mode is either input
or output. Input arguments are labelled by the + sign, and output variables by
the − sign. Every variable in an input argument of a literal must appear in an
output argument of some preceding literal in the same feature. Others setting
parameters such as the maximum length of a feature (number of contained liter-
als), maximum variable depth [11], maximum number of occurrences of a given
predicate symbol among others, can be specified or acquire a default value.

RSD generates an exhaustive set of features satisfying the language decla-
rations. A connectivity requirement, which stipulates that no feature may be
decomposable into a conjunction of two or more features, must also be satisfied.

RSD implements several pruning techniques to reduce the number of examined
expressions, while preserving the exhaustiveness of the resulting feature set. Such
techniques may often drastically decrease the run times needed to achieve the
feature set.

Employing constants and filtering features. In this step RSD substitutes
selected variables in the features with constants extracted from the input data
1 RSD is publicly available at http://labe.felk.cvut.cz/˜zelezny/rsd
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using the declared predicate instantiate/1. When such predicate appears in a
feature having a variable as its arguments it means that all occurrences of that
variable should be eventually substituted with a constant. In case of multiple
instantiate/1 predicates appear in a single feature with different variables, a num-
ber of features are generated , each one corresponding to a possible combination
of grounding of the indicated variables. Only those groundings which make the
feature true for at least a pre-specified number of individuals are considered.

The feature filtering is performed during the feature construction process
described above. Therefore, RSD discard features considering three constraints:
(a) no feature should have the same Boolean value for all the examples, (b) no
two features should have the same Boolean values for all the examples and (c) no
feature should be true for less than a minimum prescribed number of examples.

Generating a propositional representation. After constructing an appro-
priate set of features RSD can use such features and the examples to generate a
single relational table using an attribute-value representation. For more details
about RSD we refer the reader to [21].

3 Stochastic Local Search

Stochastic Local Search (SLS) algorithms have been used to solve hard combi-
natorial problems such as satisfiability. SLS algorithms are characterised by the
following properties [14]: (a) they are search algorithms, i.e. given a problem P
they search through an instance space SP for instances iP ∈ SP which might
be solutions; (b) They perform a local search. That means during their search
they only consider instances which are direct neighbors of the current instance
according to a neighborhood relation R ⊆ SP × SP ; (c) they use a global sco-
ring function scoreP : SP × SP *→ R. The decision on which instance should be
examined next depends – at least partially – on the scoring function.

SLS algorithms such as GSAT [18] and WalkSAT [17] have been successfully
used to solve challenging satisfiability problems. They have also been applied on
propositional tasks encoded as a satisfiability problem, substantially improving
their efficiency [2]. Next section brings a brief review of these algorithms.

3.1 GSAT and WalkSAT Algorithms

GSAT is based on a hill-climbing procedure with a stochastic component. It
searches for a truth assignment which satisfies a set of propositional clauses.
The basic GSAT algorithm starts with a randomly generated assignment and
then repeatedly changes (“flips”) the assignment of a single variable that leads
to the largest decrease in the number of unsatisfied clauses. These flips continue
until either a satisfying assignment is found or a pre-specified maximum number
of flips is reached. GSAT can easily become trapped in local minima and the
only way employed to it to escape from them is restart with a new randomly
generated assignment after reaching the maximum number of flips. The process
is repeated until a pre set number of tries is reached.
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Another mechanism for escaping from local minima is to randomly alternate
between greedy minimizing moves and stochastic moves, randomly selected from
the variables which appears in unsatisfied clauses. Therefore, GSAT with Ran-
dom Walk [16], with probability p, takes a random variable from an unsatisfied
clause and flips its value and with probability 1−p follows the schema of GSAT,
changing the value of the variable which minimizes the number of unsatisfied
clauses the most.

WalkSAT is derived from GSAT with Random Walk, but including signifi-
cant modifications. Different from the later, which maintains a list of variables
appearing on unsatisfied clauses and picks a variable at random from that list,
WalkSAT employs a two-steps random process: first, it picks randomly a clause
not satisfied by the current assignment and then it picks a variable, at random
or using a greedy heuristic, within that clause to flip. Another modification is
related to the scoring function. Instead of considering the overall decrease of un-
satisfied clauses, it counts the number of clauses which will become unsatisfied
if each variable in the clause chosen at random is flipped.

3.2 Stochastic Local Search in k-Term DNF Learning

The aim in k-term DNF learning is to induce a formula of k terms in disjunctive
normal form, where each term is a conjunction of literals. Formally, the k-term
DNF learning can be defined in the following way [5]:

Given:

• a set of Boolean variables Var,
• a set Pos of truth value assignments pi : V ar → 0, 1,
• a set Neg of truth value assignments ni : V ar → 0, 1 and
• a natural number k

Find:

• a DNF formula with k terms
• that evaluates to 1(true) for all variable assignments in Pos
• and evaluates to 0 (false) for all variable assignments in Neg.

k-term DNF learning is a NP-hard problem of combinatorial search. Therefore,
SLS algorithms can be applied to solve it, sacrificing completeness for better
runtime behavior. A novel SLS algorithm was designed in [15] to solve k-term
DNF learning and it is reproduced here in Fig. 1.

The algorithm starts generating randomly a hypothesis, i.e., a DNF formula
with k-terms and then refines this hypothesis in the following manner. First, it
picks a misclassified example at random. If this example is a positive one the
hypothesis must be generalized. To do so, a literal has to be removed from a term
of the hypothesis. Now, with probability pg1 and pg2 respectively, the term and
a literal in this term are chosen at random. Otherwise the term in the hypothesis
which differs in the smallest number of literals from the misclassified example
and the literal whose removal from the term decreases the score the most are
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chosen. On the other hand, if the example is a negative one, it means that the
hypothesis must be specified. Therefore, a literal has to be added in a term. The
term is chosen at random from those ones which cover the misclassified negative
example. In a similar way to the last case, either with probability ps the literal
to be added in this term is chosen at random or a random literal which decreases
the score the most is taken. This iterative process continues until the score is
equal to zero or the algorithm reaches a maximum number of modifications. All
the procedure is repeated a pre-specified number of times.

search(k, maxTries,maxSteps) : Given integer numbers k,maxTries and
maxSteps; probability parameters pg1, pg2 and ps; a set of Examples E,
returns a k-term DNF formulae

1. for i ← 1 to maxTries do
2. H ← a randomly generated k-term DNF formula;
3. steps ← 0;
4. while steps < maxSteps and scoreL(H) �= 0 do
5. steps ← steps + 1;
6. ex ← a random example ∈ E that is misclassified by H ;
7. if ex is a positive example
8. with probability pg1: t ← a random term in H ;
9. otherwise: t ← the term in H that differs in the smallest number of

literals from ex
10. with probability pg2: l ← a random literal in t;
11. otherwise: l ← the literal in t whose removal decreases scoreL(H) most;
12. H ← H with l removed from t
13. else if ex is a negative example
14. t ← a (random) term in H that covers ex;
15. with probability pS: l ← a random literal m so that t ∧ m does not

cover ex;
16. otherwise: l ← a literal whose addition to t decreases scoreL(H) most
17. H ← H with l added to t
18. end if
19. end while
20. end for

Fig. 1. An SLS algorithm for k-term DNF learning [15]

It is important to mention that SLS algorithm performs refinements of an en-
tire hypothesis rather than a single rule. A detailed analysis of SLS performance
compared to WalkSAT shows the advantages of using SLS to learn a hypothesis
as short as possible [15].

3.3 Stochastic Local Search in ILP

The recent study in [22] compared the performance of several randomized
strategies (GSAT, WalkSAT, Randomized General to Specific, Rapid Random
Restarts) to search the ILP subsumption lattice. All these methods can be viewed
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search(B,H,E, ssuf , call, γ) : Given background knowledge B; a set of clauses H ; a
training sequence E = E+, E− (i.e. positive and negative examples); a sufficient
clause score ssuf (−∞ ≤ ssuf ≤ ∞); the maximum number of clauses the algorithm
can evaluate call, (0 < call < ∞); and the maximum number of clauses evaluated
on any single restart or the ‘cutoff’ value γ (0 < γ ≤ ∞), returns a clause D such
that B ∪ H ∪ {D} entails at least one element e of E+. If fewer than call clauses
are evaluated in the search, then the score of D is at least ssuf .

1. S := −∞; C := 0; N := 0
2. repeat
3. Select esat from E+

4. Select D0 such that D0 �θ ⊥(esat, B)
5. Active = ∅; Ref = {D0}
6. repeat
7. S∗ = maxDi∈Ref evalB,H(Di); D∗ := arg maxDi∈Ref evalB,H(Di)
8. if S∗ > S then S := S∗; D := D∗

9. N := N + |Ref |
10. Active := UpdateActiveList(Active,Ref)
11. Prune := Prune(Active, S∗)
12. Active := Active \ Prune
13. Select Dcurr from Active; Active := Active \ Dcurr

14. Ref := RefineB,H,(γ−N)(D
curr)

15. until S ≥ ssuf or C + N ≥ call or N = γ
16. C := C + N ; N := 0
17. until S ≥ ssuf or C ≥ call

18. if S = −∞ then return esat else return D∗.

Fig. 2. A general skeleton of a search procedure—possibly randomized and/or
restarted—in the clause subsumption lattice bounded by the clause ⊥(esat, B). This
clause is derived using the saturant esat and the background knowledge B. In Step
4, �θ denotes Plotkin’s (theta) subsumption between a pair of Horn clauses. Individ-
ual strategies considered in this paper are obtained by different implementations of
the bold-typed commands. Clauses are scored by a finite evaluation function eval. Al-
though in the formal notation in Step 7 the function appears twice, it is assumed that
the ‘max’ and ‘arg max’ operators are computed simultaneously. In Step 11 Prune re-
turns all elements of Active that cannot possibly be refined to have a better score than
S∗. If the number of refinements of the current clause is greater than (γ −N), Refine
returns only the first (γ − N) computed refinements, to guarantee that no more than
γ clauses are evaluated between restarts. The search is terminated when score ssuf is
reached or call clauses have been evaluated, and restarted (from Step 3) when γ clauses
have been evaluated since the last restart. If all Select commands are deterministic
then restarting (setting γ < call) results in mere repetitions of the identical search.

as variations of the basic skeleton in Fig. 2, by instantiating the bold-faced com-
mands.

It was observed that if a near-to-optimal value of the cutoff parameter (the
number of clauses examined before the search is restarted) is used, then the
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mean search cost (measured by the total number of clauses explored rather than
by cpu time) may be decreased by several orders of magnitude compared to a
deterministic non-restarted search. It was also observed that differences between
the tested randomized methods were rather insignificant. In the present study
we accept the GSAT strategy for sakes of comparison. In terms of the algorithm
in Fig. 2, GSAT has the following properties: randomized saturant (example
seed) and start clause selection, greedy updating of the active list (only the best
scoring neighbor state is retained), deterministic next state selection (determined
by the scoring function), no pruning, and bidirectional refinement (combining
specialization and generalization).

A limitation of the study in [22] was that the stochastic strategies were
framed in a single clause search algorithm. One consequence of this is that the
statistically assessed performance ranking of individual strategies may not be
representative of their performance when used for an incremental entire-theory
construction due to the statistical dependence between the successive clause
search procedures. Thus in the present study we compare performance measured
for entire-theory construction processes.

3.4 Stochastic Local Search in ILP Through Propositionalization

In this work we investigate the relevance of using stochastic local search to learn
k-term DNF formulae in relational domains and to do so we have to proposition-
alize the relational problem. Therefore, we implemented a k-term DNF formulae
inducer using the SLS algorithm joined to the first-order feature construction
part of the RSD system. We compare the run-time when performing stochastic
local search through propositionalization with the run-time when doing stochas-
tic search or enumerative heuristic search directly in the relational space.

4 Experiments

4.1 Data and Methods Tested

The goals discussed before in this paper are experimentally evaluated using two
ILP benchmarks: the East-West Trains [10] and Mutagenesis Data [20].

Methods:

– Aleph [19]. Working in its default mode, with the following exceptions. For
the Mutagenesis data set, negative examples were allowed to be covered by
the constructed theory while the minimum accuracy of each rule included
in the theory was set to 0.7. For both data sets, the total number of nodes
searched within each rule-search procedure was not limited by a constant. It
was rather determined by setting the maximum number of literals in each
rule (the clauselength parameter), ranging from 3 to 7 in Mutagenesis and 3
to 12 in East-West Trains.
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– Aleph/SLS. This method uses the GSAT [22] stochastic local search pro-
cedure implemented in Aleph. The same settings as for the previous method
were applied and additionally, the number of tries (randomly initiated local
searches) was set to 10 and the number of moves (clauses explored in each
local search) was set to 100.

– DNF/SLS. This method first propositionalizes the relational data with
RSD [21] using the same language declarations as used in Aleph 2 and then
applies the stochastic k-term DNF search procedure as described in [15]
onto the propositional representation of the data.

– Propositional algorithms. In order to observe the behavior of stochastic
local search in relational problems through propositionalization when the
search is performed in the whole theory instead of individual clauses, we
also compared DNF/SLS with two popular rule learner algorithms which
use the covering approach, Part [4] and Ripper [3] with pruning disabled
since we are interested in decreasing the runtime.

4.2 Experimental Procedure

The aim of the experiments was to determine the statistical dependencies be-
tween three random variables:

– N : the number of rules contained in the resulting theory (the compression
achieved)

– T : the cpu time consumed by the search
– A: the estimated predictive accuracy of the resulting theory

We specifically model the two dependencies N vs. T and N vs. A.
We first split both datasets into 10 cross-validation folds, and for all methods,

A was estimated on the independent test data part in each fold.
For Aleph and Aleph/SLS, all the three variables acquire different values as

a result of:

– applying the method on each of the 10 cross-validation folds
– within each fold, varying the maximum clauselength parameter within its

limits as mentioned above.

The DNF/SLS method allows to directly specify k, the number of rules
(i.e. the number of DNF terms) in the constructed theory. Also Part and Rip-
per were modified to allow a specified maximum number of rules in the the-
ory. Upon executing the Aleph and Aleph/SLS experiments, we extracted the

2 Despite the same declarations, the theory spaces explored by the two approaches
are necessarily different. On one hand, only a fraction of clauses explored by Aleph
form a correct feature (as defined e.g. in [21]). On the other hand, the Aleph setting
of maximum number of literals in a rule here translates into the maximum number
of literals in a feature; however, in the subsequent k-DNF search, the features are
combined in conjunctions and the total length of a single rule thus is unbounded.
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range of the values of N from the set of resulting theories and executed repeatedly
the DNF/SLS method with k acquiring all values in the detected range. This
procedure was further repeated for each of the 10 cross-validation folds.

4.3 Results

Figures 3 and 4 present the empirical N vs. T dependency by plotting the mean
cpu-time (on logarithmic scale) consumed by search executions resulting in a
theory containing a given number of rules. This is shown for both data sets and
all three methods. For DNF/SLS, we separately plot the k-DNF learning time
excluding/including time consumed by propositionalization.

Figures 5 and 6 present the empirical N vs. A dependency by plotting the
mean estimated predictive accuracy achieved by search executions resulting in a
theory containing a given number of rules. This is shown for both data sets and
all three methods.

4.4 Principal Trends

The results indicate the following trends. DNF/SLS performs faster w.r.t. all
other tested methods when it comes to short theories (in number of rules). This
results change when allowing an increasing number of rules in the theory, with
standard Aleph being ultimately the fastest algorithm if propositionalization
time is taken into account for DNF/SLS. Comparing to relational methods, the
performance gap is significantly large (in orders of magnitude), while correspond-
ing predictive accuracy do not favor either SLS/DNF or the relational methods.
Comparing to the propositional methods, this performance gap is much smaller,
while SLS/DNF’s short theories exhibit slight superiority in terms of predictive
accuracy. Note however, that e.g. in the East-West Trains domain, each 9-rule
theory produced by standard Aleph is a trivial list of the positive examples3,
which is not the case for the other two methods (This fact can be verified from
Fig. 5 where Aleph’s 9-rule theories achieves accuracy 0.5. in the East-West
Trains domain.)

In general, the size of theories (in the number of rules contained) does not
demonstrate any significant influence onto their predictive accuracy. This is not
surprising for the East-West trains data set, where the small number of examples
(10 of each class) renders all theories almost random fits of the training data. For
Mutagenesis, an ’Occam’s razor’ intuition would suggest that higher accuracy
should be expected from a theory with fewer rules, given the same required
performance on the training data. A possible explanation of the observation
is that this classification problem is well modelled by a theory with a large
number of short rules (few literals). Our next experiments will thus address
classification problems requiring complex rules (such as the graph classification
challenge described in [22]) and where stochastic search have shown to play an
important role as in relational phase transition benchmarks [1].

3 9 of the 10 positive examples fall in the training split in each cross-validation fold.
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in a theory containing a given number of rules: comparing to relational learners
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5 Conclusions

In this work we investigated the performance of stochastic local search in ILP us-
ing a propositionalized form of relational problems. To do so, we experimentally
compared standard rule learners, standard and stochastic ILP system to a SLS
algorithm which searches for k-terms DNF formulaes. The results indicated that
DNF/SLS performs faster than all other tested methods when it comes to short
theories (in number of rules). Two main observations follow: (1) a very signifi-
cant speed-up was achieved by using SLS/DNF search on the propositionalized
form of the learning data, as compared to the default enumerative search con-
ducted by Aleph, (2) the k-term SLS run-time distribution exhibits a rapid decay,
unlike the heavy-tailed clause-search run-time distributions we observed in the
relational domain [22]. When comparing to standard propositional rule learn-
ers the gap performance is much smaller. Therefore our future work will extend
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experiments to a larger set of ILP benchmarks and relational phase transition
datasets [1] to achieve a more conclusive ranking between the DNF and greedy
strategies in the propositionalized domain.
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Abstract. We propose a novel method for efficient θ-subsumption. Our solution
is based on the idea of object context which embody the contextual information
in a clause and is given by occurrences of identical objects or chains of such oc-
currences. Efficient θ-subsumption is crucial for AI planning approaches that rely
on lifted first-order reasoning. We incorporate our object context-based method
for θ-subsumption within one approach for lifted first-order planning under un-
certainty, referred to as LIFT-UP, and compare it with several related techniques.

1 Introduction

Planning under uncertainty currently represents a modern trend in the area of AI Plan-
ning because it allows to model and reason in environments, where actions may have un-
certain outcomes and an agent does not necessarily acquire complete information about
its internal state. In many approaches, Markov Decision Processes, MDPs for short,
have been chosen as a de-facto standard representational and computational model for
planning under uncertainty [1, 2, 3]. The solution to a planning task in an uncertain
and dynamic environment, which is represented as an MDP, is an optimal policy, i.e., a
function that delivers for each state an optimal action. Due to the uncertain and dynamic
nature of the environment the solution can no longer be represented as a plain sequence
of actions as in the case of classical AI Planning, because can not be guaranteed that an
action will lead to a state which you expect it to.

Recently, therehavebeen designed several efficient techniques for solvingMDPs[1,4].
Among others, one could emphasize an approach, referred to as SPUDD [4], which has
been used to solve MDPs with hundreds of millions of states optimally. This work demon-
strates that large MDPs, described in a logical fashion, can often be solved optimally by
exploiting the logical structure of the problem. In another vein, approaches, like, e.g., real-
time dynamic programming (RTDP) [2] or symbolic LAO∗ [3], employ heuristic search
that restricts the computation to those states that are reachable from the initial state.

Meanwhile, many realistic planning problems are best represented in first-order terms.
In this respect, existing planning systems for solving first-order MDPs can be divided into
two clusters. The first cluster is represented by propositionalization-based approaches
which have performed extraordinary well on 2004 and 2006 International Planning Com-
petitions. The second cluster, which is substantially smaller, contains a few
propositionalization-free systems which currently outperform the state-of-the-art meth-
ods from the first cluster only on a certain class of problems [5]. In comparison to the
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former systems, which perform inferences on grounded propositions, the latter ones op-
erate on the lifted level, namely reason with first-order constructions.

Although propositionalization-based planning methods demonstrate a favourable
computational behaviour on a wide range of benchmark problems, they suffer from one
important shortcoming. Namely, once a domain of interest becomes incompletely spec-
ified or even infinite,1 they fail to accomplish the domain propositionalization. Another
reason in favour of propositionalization-free techniques is that lifted reasoning reflects
the spirit and beauty of the logic-based planning which has almost vanished and which
we would like to revive on the AI planning market. Therefore, our ultimate goal is to de-
velop a competitive planning system based on the lifted reasoning that would be able to
outperform its propositionalization-based opponents on a considerably larger fraction
of benchmark problems.

Recently, we have developed a lifted approach, referred to as LIFT-UP, for solving
first-order MDPs [6]. In order to evaluate the LIFT-UP method, we have designed a
domain-dependent implementation, referred to as FLUCAP [5].

In the meantime, we have concentrated on developing efficient domain-independent
inference procedures that operate on the first-order level thereby avoiding problem
propositionalization. One very important inference procedure is θ-subsumption that
arises at several occassions within the LIFT-UP approach. First, θ-subsumption is used
as a consequence relation for the decision of whether an initial state covers precondi-
tions of an action and, if an action is applicable, for computing the complete set of all
successors of an initial state. Second, θ-subsumption is realized as a normalization test
for detecting which states can be removed from the state space. Third, if a goal state-
ment is fully specified, θ-subsumption is employed for computing all predecessors of a
goal.

In general, θ-subsumption is NP-complete [7]. There have been recently proposed
several approaches to cope with the NP-completeness of θ-subsumption. They include
deterministic subsumption [8], constraint-based techniques, e.g., Django [9], and
context-based methods, e.g., LITCON [10]. In practice, there may be only few literals,
or none at all, that can be matched deterministically. Django has been initially designed
as a θ-subsumption checker: It delivers only yes/no answer to the problem. Since in
the LIFT-UP system we require all successors of an initial state, it remains to estimate
the effort of extending Django to deliver all solutions to the subsumption problem. In
comparison to the previous two methods, context-based approaches to θ-subsumption
seem to provide a very flexible framework which can be naturally extended towards
computing all solutions.

However, as it was shown in [11], LITCON [10] does not scale very well up to large
context depth. Because in some planning problems, the size of state descriptions can
be relatively large, it might be necessary to compute the contextual information for
large values of the depth parameter. Therefore, we are strongly interested in a tech-
nique that scales better than LITCON . In this paper, we present an approach, referred
to as object context, or OBJCON , for short, which demonstrates better computational
behaviour.

1 However, the construction of a realistic infinite planning domain requires substantial effort.
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2 First-Order Markov Decision Processes

A Markov decision process, is a tuple (Z,A,P ,R, C), where Z is a finite set of states,
A is a finite set of actions, and P : Z × Z × A → [0, 1], written P(z′|z, a), specifies
transition probabilities. In particular, P(z′|z, a) denotes the probability of ending up at
state z′ given that the agent was in state z and action a was executed. R : Z → R is
a real-valued reward function associating with each state z its immediate utility R(z).
C : A → R is a real-valued cost function associating a cost C(a) with each action a. A
sequential decision problem consists of a Markov decision process and is the problem
of finding a policy π : Z → A that maximizes the total expected discounted reward
received when executing the policy π over an infinite (or indefinite) horizon. A Markov
decision process is said to be first-order if the expressions used to define Z , A and P
are first-order.

The value Vπ(z) of a state z with respect to the policy π is defined as

Vπ(z) = R(z) + C(π(z)) + γ
∑

z′∈Z
P(z′|z, π(z))Vπ(z′),

where 0 ≤ γ ≤ 1 is a discount factor. We take γ equal to 1 for indefinite-horizon
problems only, i. e. when a goal is reached the system enters an absorbing state in which
no further rewards or costs are accrued. A value function V is set to be optimal if it
satisfies

R(z) + max
a∈A

{C(a) + γ
∑

z′∈Z
P(z′|z, a)V ∗(z′)} ,

for each z ∈ Z; in this case the value function is usually denoted by V ∗(z). The optimal
policy is extracted from the optimal value function.

3 Probabilistic Fluent Calculus

States, actions, transition probabilities, cost and reward function are specified in a prob-
abilistic and sorted extension of the fluent calculus [12, 13].

Fluents and States. Let Σ denote a set of function symbols containing the binary func-
tion symbol ◦ and the nullary function symbol 1. ◦ is an AC1-symbol with 1 as unit ele-
ment. Let Σ− = Σ\{◦, 1}. Non-variable Σ−-terms are called fluents. Let f(t1, . . . , tn)
be a fluent. The terms ti, 1 ≤ i ≤ n are called objects. A state is a finite set of ground
fluents. Let D be the set of all states.

Fluent Terms and Abstract States. Fluent terms are defined inductively as follows: 1
is a fluent term; each fluent is a fluent term; if G1 and G2 are fluent terms, then so is
G1 ◦G2. Let F be the set of all fluent terms. We assume that each fluent term obeys the
singularity condition: each fluent may occur at most once in a fluent term. Because of
the latter, there is a bijection ·M between ground fluent terms and states. Some care must
be taken when instantiating a non-ground fluent term F by a substitution θ because Fθ
may violate the singularity condition. A substitution θ is allowed for fluent term F if
Fθ meets the singularity condition.



θ-Subsumption Based on Object Context 397

(c)

(d)

(b)

(a)

Fig. 1. The interpretations of the abstract states (a) Z1 = on(X1, a) ◦ on(a, table), (b) Z2 =
on(X2, a) ◦ on(a, table) ◦ Y2, (c) Z3 = on(X3, a) ◦ on(a, table) ◦ clear(X3) and (d) Z4 =
on(X4, a) ◦ on(a, table) ◦ clear(X4) ◦ Y4, where a is an object denoting a block, table is an
object denoting a table, X1, X2, X3 and X4 are variables of sort object, Y2 and Y4 are variables
of sort fluent term, on(Xi, a), i = 1 . . . 4, is a fluent denoting that some block Xi is on a and
clear(Xi), i = 3, 4, is a fluent denoting that block Xi is clear.

Abstract states are expressions of the form F or F ◦X , where F is a fluent term and
X is a variable of sort fluent term. Let S denote the set of abstract states. Abstract states
denote sets of states as defined by the mapping ·I : S → 2D: Let Z be an abstract state.
Then

[Z]I = {[Zθ]M | θ is an allowed grounding substitution for Z}.
This is illustrated in Figure 1. In other words, abstract states are characterized by means
of positive conditions that must hold in each ground instance thereof and, thus, they
represent clusters of states. In this way, abstract states embody a form of state space
abstraction, which is called first-order state abstraction.

As a running example, we consider problems taken from the colored Blocksworld
scenario, which is an extension of the classical Blocksworld scenario in the sense that
along with the unique identifier, each block is now assigned a specific color. Thus, a
state description provides an arrangement of colors instead of an arrangement of blocks.
For example, a state Z defined as a fluent term:

Z = red(X0) ◦ green(X1) ◦ blue(X2) ◦ red(X3) ◦ red(X4)◦
red(X5) ◦ green(X6) ◦ green(X7) ◦ Tower(X0, . . . , X7) ,

specifies a tower that is comprised of eigth colored blocks.

Subsumption. Let Z1 and Z2 be abstract states. Then Z1 is subsumed by Z2, in symbols
Z1 ' Z2, if there exists an allowed substitution θ such that Z2θ =AC1 Z1. Intuitively,
Z1 is subsumed by Z2 iff ZI

1 ⊆ ZI
2 . In the LIFT-UP system we are often concerned

with the problem of finding a complete set of allowed substitutions solving the AC1-
matching problem Z2θ =AC1 Z1. For example, consider the abstract states mentioned
in Figure 1. Then, Z1 ' Z2 with θ = {X2 *→ X1, Y2 *→ 1}, Z3 ' Z2 with θ = {X2 *→
X3, Y2 *→ clear(X3)}. However, Z1 �' Z3 and Z3 �' Z1.

Actions. Let Σa denote a set of action names, where Σa∩Σ = ∅. An action spaceA is
a set of expressions of the form (a(X1, . . . , Xn), C, E), where a ∈ Σa, Xi, 1 ≤ i ≤ n,
are variables or constants, C ∈ F called precondition and E ∈ F called effect of the
action a(X1, . . . , Xn). E.g., a pickup-action in the blockworld can be specified by
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(pickup (X, Y ), on(X, Y ) ◦ clear(X) ◦ empty, holding(X) ◦ clear(Y )),

where empty denotes that the robot arm is empty and holding(X) that the block X
is in the gripper. For simplicity, we will often supress parameters, preconditions and
effects of an action (a(X1, . . . , Xn), C, E) and refer to it as a instead.

Nature’s Choice and Probabilities. In analogy to the approach in [14] stochastic ac-
tions are decomposed into deterministic primitives under nature’s control, referred to as
nature’s choices. It can be modelled with the help of a binary relation symbol choice
as follows: Consider the action pickup (X, Y ):

choice (pickup (X, Y ), a)↔ (a = pickupS (X, Y ) ∨ a = pickupF (X, Y )),

where pickupS and pickupF define two nature’s choices for action pickup , viz., that it
succeeds or fails. For simplicity, we denote the set of nature’s choices of an action a as
Ch (a) := {aj|choice (a, aj)}.

For each of nature’s choices aj associated with an action a we define the probability
prob (aj , a, Z) denoting the probability with which one of nature’s choices aj is chosen
in a state Z . For example,

prob (pickupS (X, Y ), pickup (X, Y ), Z) = .75

states that the probability for the successful execution of the pickup action in state Z
is .75. We require that for each action the probabilities of all its nature’s choices sum
up to 1.

Rewards and Costs. Reward and cost functions are defined for abstract states using the
unary relation symbols reward and cost. For example, we might want to give a reward
of 500 to all states in which some block X is on block a and 0, otherwise:

reward (Z) = 500↔ Z ' (on(X, a), ∅),
reward (Z) = 0 ↔ Z �' (on(X, a), ∅).

In other words, the state space is divided into two abstract states depending on whether
or not, a block X is on block a. Likewise, value functions can be specified with respect
to the abstract states only. Action costs can be analogously defined. E. g., with

cost(pickup (X, Y )) = 3

the execution of the pickup -action is penalized with 3.

Forward and Backward Application of Actions. An action (a(X1, . . . , Xn), C, E) is
forward applicable with θ to an abstract state Z ∈ S, denoted as forward (Z, a, θ), if
(C ◦ U)θ =AC1 Z , where U is a new variable of sort fluent term and θ is an allowed
substitution. If applicable, then the action progresses to or yields the state (E ◦ U)θ. In
this case, (E ◦ U)θ is called successor state of Z and denoted as succ(Z, a, θ).

An action (a(X1, . . . , Xn), C, E) is backward applicable with θ to an abstract state
Z ∈ S, denoted as backward (Z, a, θ), if (E ◦ U)θ =AC1 Z , where U is a new vari-
able of sort fluent term and θ is an allowed substitution. If applicable, then the action
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regresses to the state (C ◦ U)θ. In this case, (C ◦ U)θ is called predecessor state of
Z and denoted as pred(Z, a, θ). One should observe that the AC1-matching problems
involved in the application of actions are subsumption problems, viz. Z ' (C ◦U) and
Z ' (E ◦ U). Moreover, in order to determine all possible successor or predecessor
states of some state with respect to some action we have to compute complete sets of
allowed substitutions solving the corresponding subsumption problems.

4 LIFT-UP Algorithm

In order to solve first-order MDPs, we have developed a new algorithm that combines
heuristic search and first-order state abstraction techniques. Our algorithm, referred to
as LIFT-UP, can be seen as a generalization of the symbolic LAO∗ algorithm by [3].
Given an initial state, LIFT-UP uses an admissible heuristic to focus computation on the
parts of the state space that are reachable from the initial state. Moreover, it specifies
MDP components, value functions, policies, and admissible heuristics using a first-
order language of the Probabilistic Fluent Calculus. This allows LIFT-UP to manipulate
abstract states instead of individual states. The algorithm itself is presented in Figure 2.

As symbolic LAO∗, LIFT-UP has two phases that alternate until a complete solution
is found, which is guaranteed to be optimal. First, it expands the best partial policy and
evaluates the states on its fringe using an admissible heuristic function. Then it performs
dynamic programming on the states visited by the best partial policy, to update their
values and possibly revise the current best partial policy. We note that we focus on
partial policies that map a subcollection of states into actions.

In the policy expansion step, we perform reachability analysis to find the set F of
states that have not yet been expanded, but are reachable from the set S0 of initial states
by following the partial policy π. The set of states G contains states that have been
expanded so far. By expanding a partial policy we mean that it will be defined for a
larger set of states in the dynamic programming step. In symbolic LAO∗, reachability
analysis is performed on propositional algebraic decision diagrams (ADDs). Therefore,
an additional preprocessing of a first-order MDP is required at the outset of any solution
attempt. This preprocessing involves propositionalization of the first-order structure of
an MDP, viz., instantiation of the MDP components with all possible combinations of
domain objects. Whereas, LIFT-UP relies on the lifted first-order reasoning, that is,
computations are kept on the first-order level avoiding propositionalization. In partic-
ular, action applicability check and computation of successors as well as predecessors
are accomplished on abstract states directly.

In the dynamic programming step of LIFT-UP, we employ a modified first-order
value iteration algorithm (FOVI) that computes the value only on those states which are
reachable from the initial states. More precisely, we call FOVI on the set E of states that
are visited by the best current partial policy. In this way, we improve the efficiency of
the original FOVI algorithm by [15] by using symbolic dynamic programming together
with reachability analysis. Given a first-order MDP and a value function represented
in PFC, FOVI returns the best partial value function V , the best partial policy π and
the residual r. In order to update the values of the states Z in E, we assign the values
from the current value function to the successors of Z . We compute successors with
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respect to all nature’s choices aj . The residual r is computed as the absolute value of
the largest difference between the current and the newly computed value functions V ′

and V , respectively. We note that the newly computed value function V is taken in
its normalized form, i.e., as a result of the normalize procedure. Extraction of a best
partial policy π is straightforward: One simply needs to extract the maximizing actions
from the best partial value function V .

As with symbolic LAO∗, LIFT-UP converges to an ε-optimal policy when three con-
ditions are met: (1) its current policy does not have any unexpanded states, (2) the
residual r is less than the predefined threshold ε, and (3) the value function is initialized
with an admissible heuristic. When calling LIFT-UP, we initialize the value function
with an admissible heuristic function h that focuses the search on a subset of reachable
states. A simple way to create an admissible heuristic is to use dynamic programming
to compute an approximate value function. Therefore, in order to obtain an admissible
heuristic h in LIFT-UP, we perform several iterations of the original FOVI. We start
the algorithm on an initial value function that is admissible. Since each step of FOVI
preserves admissibility, the resulting value function is admissible as well. The initial
value function assigns the goal reward to each state thereby overestimating the optimal
value, since the goal reward is the maximal possible reward.

5 Efficient Domain-Independent θ-Subsumption

To evaluate the LIFT-UP approach we have developed a domain-dependent implemen-
tation called FLUCAP [5]. It can solve probabilistic Blocksworld problems as they
appeared, for example, in the colored Blocksworld domain of the 2004 International
Planning Competition [16]. In the meantime, we have concentrated on developing ef-
ficient domain-independent inference procedures that operate on the first-order level
thereby circumventing problem propositionalization. One very important inference pro-
cedure is θ-subsumption that arises at several occassions within the LIFT-UP approach.
First, θ-subsumption is used at the policy expansion step for computing all successors of
an initial state. Second, θ-subsumption underlies the normalization procedure at the dy-
namic programming step, where the FOVI algorithm is called. Third, if a goal statement
is fully specified, θ-subsumption is employed for computing the heuristic function h.
However, in most competition benchmark problems, goal statements are only partially
defined. In this cases, an extended θ-subsumption, where subsumee is partially speci-
fied, is required.

Let F1 and F2 be fluent terms under singularity condition. Then F̂1 and F̂2 are clause
representations of F1 and F2, respectively. The clause representation F̂ of a fluent term
F is defined as follows.

F̂ =

⎧
⎨

⎩

{} F = 1
{F} F is a fluent
Ĝ1 ∪ Ĝ2 F = G1 ◦G2

Then AC1-matching problem of whether there exists an allowed substitution θ such that
(F1 ◦ U)θ =AC1 F2, where U is a new variable of sort fluent term, is equivalent to the
θ-subsumption problem of whether there exists a substitution θ such that F̂1θ ⊆ F̂2,
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policyExpansion(π, S0, G)
E := F := ∅ and from := S0

repeat
to :=

�

Z∈from

�

aj∈Ch(a)
{succ(Z, aj , θ)},

where (a, θ) := π(Z)
F := F ∪ (to − G) and E := E ∪ from
from := to ∩ G − E

until (from = ∅)
E := E ∪ F and G := G ∪ F
return (E, F, G)

FOVI(E,A, prob, reward, cost, γ, V )
repeat

V ′ := V
loop for each Z ∈ E
loop for each a ∈ A
loop for each θ such that forward (Z, a, θ)

Q(Z, a, θ) := reward(Z) + cost(a)+
γ

�

aj∈Ch(a)
prob(aj , a, Z) · V ′(succ(Z, aj , θ))

end loop
end loop
V (Z) := max

(a,θ)
Q(Z, a, θ)

end loop
V := normalize(V )
r := ‖V − V ′‖

until stopping criterion
π := extractPolicy(V )
return (V, π, r)

LIFT-UP(A, prob, reward, cost, γ,S0, h, ε)
V := h and G := ∅
For each Z ∈ S0, initialize π with an arbitrary action
repeat

(E, F, G) := policyExpansion(π,S0, G)
(V, π, r) := FOVI(E,A, prob, reward, cost, γ, V )

until (F = ∅) and r ≤ ε
return (π, V )

Fig. 2. LIFT-UP algorithm

where F̂1, F̂2 are clause representations of F1 and F2, respectively. A clause represents
a set of literals.

5.1 Existing Techniques

In general, θ-subsumption is NP-complete [7] One approach to cope with the
NP-completeness of θ-subsumption is deterministic subsumption. A clause is said to
be determinate if there is an ordering of literals, such that in each step there is a literal
which has exactly one match that is consistent with the previously matched literals [8].
However, in practice, there may be only few literals, or none at all, that can be matched
deterministically. Recently, in [10], it was developed another approach, which we refer
to as literal context, LITCON, for short, to cope with the complexity of θ-subsumption.
The authors propose to reduce the number of matching candidates for each literal by
using the contextual information. The method is based on the idea that literals may only
be matched to those literals that possess the same relations up to an arbitrary depth in a
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clause. As a result, a certain superset of determinate clauses can be tested for subsump-
tion in polynomial time.

Unfortunately, as it was shown in [11], LITCON does not scale very well up to large
depth. Because in some planning problems, the size of state descriptions can be rel-
atively large, it might be necessary to compute the contextual information for large
values of the depth parameter. Therefore, we are strongly interested in a technique that
scales better than LITCON. In this section, we present an approach, referred to as object
context, OBJCON, for short, which demonstrates better computational behaviour than
LITCON. Based on the idea of OBJCON, we develop a new θ-subsumption algorithm
and compare it with the LITCON-based approach.

We should pinpoint a very efficient constraint-based approach for solving the
θ-subsumption problem, referred to as Django [9]. Django is nowadays the fastest
θ-subsumption checker that delivers only yes/no answers. In subsequent sections, we
present a comparison analysis of our OBJCON -based reasoner with Django on the nor-
malization problems, viz., problems that require only yes/no answers in order to decide
whether a state can be effortlessly removed from the state space.

5.2 Object Context

In general, a literal f in a clause C can be matched with several literals in a clause
D, that are referred to as matching candidates of f . LITCON is based on the idea that
literals in C can be only matched to those literals in D, the context of which include
the context of the literals in C [10]. The context is given by occurrences of identical
objects (variables Vars (C) and constants Const (C)) or chains of such occurrences and
is defined up to some fixed depth. In effect, matching candidates that do not meet the
above context condition can be effortlessly pruned. In most cases, such pruning re-
sults in deterministic subsumption, thereby considerably extending the tractable class
of clauses.

The computation of the context itself is dramatically affected by the depth parameter:
The larger the depth is, the longer the chains of objects’ occurrences are, and thus, more
effort should be devoted to build them. For example, consider a clause

C = {on(X, Y ), on(Y, table), red(X), blue(Y ), heavy(X), wet(X),
fragile(X), fragile(Y ), light(Y ), dry(Y )}

that can be informally read as: A block X is on the block Y which is on the table, and
both blocks enjoy various properties.

In LITCON, the context should be computed for ten literals in order to keep track
of all occurrences of identical objects. What if we were to compute the context for
each object instead? In our running example, we would need to perform computa-
tions only three times, in this case. Herein, we propose a more efficient approach,
referred to as OBJCON, for computing the contextual information with respect to ob-
jects instead of literals. More formally, we build the object occurrence graph GC =
(V, E, �) for a clause C, where vertices are objects of C, denoted as Obj (C), and
edges E = {(o1, π1, f, π2, o2)| f(t1, . . . , tn) ∈ C and o1 = tπ1 and o2 = tπ2} with
o1, o2 ∈ Obj (C), f(t1, . . . , tn) being a literal and π1, π2 being positions of objects
o1, o2 in f . The labeling function �(o) = {f |f(o) ∈ C} associates each object o with
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red(X)

on(X, Y )

heavy(X)

blue(Y )

fragile(X)

fragile(Y )

light(Y )

wet(X)

dry(Y )

on(Y, table)

(a) LiteralContext graph

X

Y

table

12

1 2

on on

{blue, light, dry, fragile}

{red, heavy, wet, fragile}

{}

(b) ObjectContext graph

Fig. 3. Literal (a) and object (b) occurrence graphs for the clause C

a unary literal name f , this object belongs to. Figure 3b presents the object occurrence
graph for the clause C from our running example which contains three vertices X , Y
and table with labels {red, heavy, wet, fragile}, {blue, light, dry, fragile} and {},
resp., and two edges (X, 1, on, 2, Y ) and (Y, 1, on, 2, table). For comparison, the lit-
eral occurrence graph is depicted on Figure 3a and contains ten vertices and twenty
four edges.

Definition 1. Let C be a clause, o ∈ Obj(C) and d > 0. The object context, denoted
as OBJCON(o, C, d), of depth d is defined as the set of chains of labels:

�(o)
π1
1·f1·π1

2−→ �(o1)
π2
1·f2·π2

2−→ . . .
πd
1 ·fd·πd

2−→ �(od) ∈ OBJCON(o, C, d)

iff

o
π1
1 ·f1·π1

2−→ o1
π2
1 ·f2·π2

2−→ . . .
πd
1 ·fd·πd

2−→ od

is a path in GC of length d starting at o.

In our running example, OBJCON(X, C, 1) of depth 1 of the variable X in C contains

one chain {red, heavy, wet, fragile} 1·on·2−→ {blue, light, dry, fragile}.
Following the ideas of [10], we define the embedding of object contexts for clauses

C and D, which serves as a pruning condition for reducing the space of matching can-
didates for C and D. Briefly, let OC1 =OBJCON(o1, C, d), OC2 =OBJCON(o2, D, d).
Then OC1 is embedded in OC2, written OC1 � OC2, iff for every chain of labels in
OC1 there exists a chain of labels in OC2 which preserves the positions of objects in
literals and the labels for each object in OC1 are included in the respective labels in
OC2 up to the depth d.

Proposition 1 (Pruning). Let C and D be clauses, X ∈ Vars (C), o ∈ Obj(D), and
d > 0. Let Xμ = o, where μ is a matching substitution. If OBJCON(X, C, d) ��
OBJCON(o, D, d) then there exists no θ such that Cμθ ⊆ D.
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Algorithm 1. OBJCON-ALLTHETA

Input: Two clauses C and D.
Output: A complete set of substitutitons θ such that Cθ ⊆ D.

1. Deterministically match as many literals of C as possible to literals of D. Substitute C
with the substitution found. If some literal of C does not match any literal of D, decide
Cθ �⊆ D.

2. OBJCON-based deterministically match as many literals of C as possible to literals of
D. Substitute C with the substitution found. If some literal of C does not match any
literal of D, decide Cθ �⊆ D.

3. Build the substitution graph (V, E) for C and D with nodes v = (μ, i) ∈ V , where μ
is a matching candidate for C and D, i.e., matches some literal at position i in C to
some literal in D and i ≥ 1 is referred to as a layer of v. Two nodes (μ1, i1) and (μ2, i2)
are connected with an edge iff μ1μ2 = μ2μ1 and i1 �= i2. Delete all nodes (μ, i) such
that Xμ = o for some X ∈ Vars (C) and o ∈ Obj (D), and
OBJCON(X, C, d) �� OBJCON(o, D, d) for some d. Find all cliques of size |C| in (V, E).

In other words, a variable X in C cannot be matched against an object o in D within a
globally consistent match, if the variable’s context cannot be embedded in the object’s
context. Therefore, the substitutions that meet the above condition can be effortlessly
pruned from the search space. For any context depth d > 0, the context inclusion is an
additional condition that reduces the number of candidates, and hence there exists more
often at most one remaining matching candidate.

Based on the idea of the object context, we describe a θ-subsumption algorithm in
Algorithm 1. Please note that this algorithm provides a complete set of all allowed
substitutions which is used later on for determining the set of all possible successors
or predecessors of some abstract state with respect to some action. Due to the lack of
space, we omit the algorithm for computing all cliques in a substitution graph. However,
it can be found along with other clarifications in [11].

5.3 Experimental Evaluation

All results presented in this section were obtained using RedHat Linux running on a
2.4GHz Pentium IV machine with 2GB of RAM.

Literal Context Versus Object Context. Figure 4 depicts the comparison timing re-
sults for the LITCON-based subsumption reasoner, referred to as LITCON-ALLTHETA,
and its OBJCON-based opponent, referred to as OBJCON-ALLTHETA. We note that both
reasoners deliver a complete set of all possible solutions for the θ-subsumption problem
between preconditions of an action and a state.

We demonstrate the advantages of exploiting the object-based context information
on problems that stem from the colored Blocksworld and Pipesworld planning scenar-
ios. The colored Blocksworld has been defined in Section 3. The Pipesworld domain
models the flow of oil-derivative liquids through pipeline segments connecting areas,
and is inspired by applications in the oil industry. Liquids are modeled as batches of a
certain unit size. A segment must always contain a certain number of batches (i.e., it
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Fig. 4. Comparison timing results for OBJCON-ALLTHETA and LITCON-ALLTHETA. The re-
sults present the average time needed for one subsumption test. Please note that the plots for
Pipesworld are shown in logscale. Therefore small differences in the plot may indicate a substan-
tial difference on runtimes.

must always be full). Batches can be pushed into pipelines from either side, leading to
the batch at the opposite end “falling” into the incident area. Batches have associated
product types, and batches of certain types may never be adjacent to each other in a
pipeline.

For each problem, there have been done 1000 subsumption tests. The time limit of
100 minutes has been allocated. The results show that OBJCON-ALLTHETA scales bet-
ter than LITCON-ALLTHETA. It is best to observe on the problems of forteen-, twenty-
, and thirty-blocks. As empirical results demonstrate, the optimal value of the depth
parameter for Blocksworld and Pipesworld is four. Moreover, on the Pipesworld prob-
lems, OBJCON-ALLTHETA requires two orders of magnitude less time than LITCON-
ALLTHETA.

The main reason for the computational gain of OBJCON-ALLTHETA is that it is less
sensitive to the growth of the depth parameter. Under the condition that the number of
objects in a clause is strictly less than the number of literals and other parameters are
fixed, the amount of object context information is strictly less than the amount of the
literal context information.

Table 1 depicts the comparison timing results between LITCON-ALLTHETA and
OBJCON-ALLTHETA on larger instances of the colored Blocksworld problems. Both
reasoners attempt to solve the normalization task of whether one state subsumes
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Table 1. Representative timing results in milliseconds for one subsumption teston large instances
of colored Blocksworld problems for LITCON-ALLTHETA and OBJCON-ALLTHETA.BWX, where
X stands for the number of blocks in a problem. A dash means that the algorithm did not finish
within 100 minutes. The best results are marked in bold.

algorithm BW100 BW125 BW150 BW175 BW200 BW250 BW300 BW350 BW400 BW450

LITCON

d=2 2085 2951 4745 3921 – – – – – –
d=3 365 611 1285 834 1815 3513 – – – –
d=4 117 162 320 172 597 1264 5791 – – –
d=5 589 713 1015 1050 3421 5182 2783 3914 – –

OBJCON

d=2 54 490 – – – – – – – –
d=3 13 15 5391 3718 – – – – – –
d=4 4 83 1768 972 4236 5017 – – – –
d=5 3 5 362 11 981 1249 3769 5351 – –
d=6 3 6 19 10 28 713 1115 2018 2517 –
d=7 5 7 22 14 37 59 553 942 102 –
d=8 12 15 40 25 78 115 94 71 163 –
d=9 35 40 99 69 255 395 145 186 605 618
d=10 148 124 365 254 1053 – 516 770 3445 4529

another one. The reasoners deliver yes/no answer. For each problem, there have been
done 1000 subsumption tests. The time limit of 100 minutes has been allocated. The
results show that OBJCON-ALLTHETA scales better than LITCON-ALLTHETA on large
problems. E.g., LITCON-ALLTHETA could solve problems of size up to 350 blocks
only. Whereas OBJCON-ALLTHETA easily scales further.

Object Context Versus Django. Django has been initially designed as a θ-subsumption
checker: It delivers only yes/no answer to the problem. Therefore, we could perform
comparison on the normalization tasks only. Our main question in this part was to figure
out whether we could use Django for solving normalization tasks. The outcome of our
preliminary investigations is that on Blocksworld problems OBJCON-ALLTHETA is two
times faster than Django. Please refer to Figure 5. Whereas, on Pipesworld problems,
Django considerably outperforms our reasoner. Therefore, on the normalization tasks
that arise at the dynamic programming step of the LIFT-UP approach, it is advisable to
employ Django than an OBJCON-based reasoner.

However, we argue that for computing all successors of an initial state at the policy
expansion step in LIFT-UP it is desirable to use OBJCON-based solver. We present
several justifications. If we aim at applying Django for computing all solutions of the θ-
subsumption problem, a substantial effort is required to extract a solution under current
dual constraint representation of a problem. The graph that represents a problem in
Django is substantially ‘lighter’ than the object occurrence graph in the sense that it
does not contain enough information to efficiently extract the substitution itself as soon
as it is required. More precisely, the graph under dual representation does not store the
list of pairs ({f/f ′}, {g/g′}), where f and g (resp., f ′ and g′) belong to C (resp., D),
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Fig. 5. Comparison timing results for OBJCON-ALLTHETA and Django on colored Blocksworld
problems

such that assignment {f/f ′, g/g′} is consistent. Instead, the local consistency check is
implemented as a function checking for each pair f ′ and g′ in the domain of Yf and Yg ,
resp., whether assignment {f/f ′, g/g′} is consistent.

Moreover, in cases, where an extended θ-subsumption is required (e.g., where
clauses are partially specified), it remains to investigate how the current dual constraint
representation can be extended towards solving this extended θ-subsumption problem.
In case of the OBJCON -based approach, we propose to extend the algorithm for finding
all cliques in the substitution graph in the following way. Instead of searching for all
cliques of size |C| in a substitution graph G, find all cliques of any size in the extended
substitution graph Ĝ, where the vertices are unifying substitutions and the compatibility
condition is defined on the unifying substitutions.

6 Related Work

Some related approaches are known. For example, Django [9] is, nowadays, the fastest
θ-subsumption checker that is based on the constraint satisfaction. Yet, it returns a bi-
nary answer ‘yes/no’ only and provides no solutions, even in the positive case. The sys-
tem Fasϑ [17] can be applied to compute all solutions of the θ-subsumption problem.
It was recently shown that LITCON-ALLTHETA is substantially faster than Fasϑ [11].
In the ReBel approach, authors employ a θ-subsumption algorithm that delivers a set of
all solutions for the θ-subsumption problem [18]. For this, a generalized θ-subsumption
framework is applied.

7 Conclusions

We have proposed a novel approach for efficient θ-subsumption that is based on the idea
of object context. We have motivated our method by applying it for several reasoning
tasks in a planning system LIFT-UP. Our method demonstrates an advantageous com-
putational behaviour on problems of finding all possible solutions of the θ-subsumption
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problem. On most normalization tasks, except for Blocksworld problems, it is outper-
formed by Django.
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8. Kietz, J.-U., Lübbe, M.: An efficient subsumption algorithm for inductive logic program-
ming. In: ICML (1994)

9. Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction algorithms.
ML 55(2) (2004)

10. Scheffer, T., Herbrich, R., Wysotzki, F.: Efficient θ-subsumption based on graph algorithms.
In: Inductive Logic Programming. LNCS, vol. 1314, Springer, Heidelberg (1997)
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Abstract. The identification of the correct sense of a word is neces-
sary for many tasks in automatic natural language processing like ma-
chine translation, information retrieval, speech and text processing. Au-
tomatic Word Sense Disambiguation (WSD) is difficult and accuracies
with state-of-the art methods are substantially lower than in other areas
of text understanding like part-of-speech tagging. One shortcoming of
these methods is that they do not utilize substantial sources of back-
ground knowledge, such as semantic taxonomies and dictionaries, which
are now available in electronic form (the methods largely use shallow
syntactic features). Empirical results from the use of Inductive Logic
Programming (ILP) have repeatedly shown the ability of ILP systems to
use diverse sources of background knowledge. In this paper we investigate
the use of ILP for WSD in two different ways: (a) as a stand-alone con-
structor of models for WSD; and (b) to build interesting features, which
can then be used by standard model-builders such as SVM. In our exper-
iments we examine a monolingual WSD task using the 32 English verbs
contained in the SENSEVAL-3 benchmark data; and a bilingual WSD
task using 7 highly ambiguous verbs in machine translation from Eng-
lish to Portuguese. Background knowledge available is from eight sources
that provide a wide range of syntactic and semantic information. For both
WSD tasks, experimental results show that ILP-constructed models and
models built using ILP-generated features have higher accuracies than
those obtained using a state-of-the art feature-based technique equipped
with shallow syntactic features. This suggests that the use of ILP with
diverse sources of background knowledge can provide one way for making
substantial progress in the field of automatic WSD.
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1 Introduction

Word Sense Disambiguation (WSD) aims to identify the correct sense of an
ambiguous word in a sentence. Usually described as an “intermediate task”—
that is, not an end in itself—it is necessary in most natural language tasks
like machine translation, information retrieval, speech and text processing, and
so on. That it is extremely difficult, possibly impractical, to completely solve
WSD is a long-standing view [2] and accuracies with state-of-the art methods
are substantially lower than in other areas of text understanding. Part-of-speech
tagging accuracies, for example, are now over 95%; in contrast, the best WSD
results are still below 80%.

The principal approach adopted for the automatic construction of WSD mod-
els is a “shallow” one. In this, sample data consisting of sentences with the am-
biguous words and their correct sense are represented using features capturing
some limited context around the ambiguous words in each sentence. For example,
features may denote two to three words on either side of an ambiguous word and
the part-of-speech tags of those words. Sample data represented in this manner
are then used by a statistical model constructor to build a general predictive
model for disambiguating words. Results from the literature on benchmark data
like those provided under the various SENSEVAL competitions1 suggest that
support vector machines (SVMs) yield models with one of the highest accu-
racies. Despite some improvements made in the accuracy of predictions, it is
generally thought that significant progress in automatic WSD would require a
“deep” approach in which access to substantial body of linguistic and world
knowledge could assist in resolving ambiguities. However, the incorporation of
large amounts of domain knowledge has been hampered by the following: (a) ac-
cess to such information in electronic form suitable for constructing models; and
(b) modeling techniques capable of utilizing diverse sources of domain knowl-
edge. The first of these difficulties is now greatly alleviated by the availability in
electronic form of very large semantic lexicons like WordNet [14], dictionaries,
parsers, grammars and so on. In addition, there are now very large amounts of
“shallow” data in the form of electronic text corpora from which statistical in-
formation can be readily extracted. Using these diverse sources of information is,
however, beyond the capabilities of existing general-purpose statistical methods
that have been used for WSD. Arguably, Inductive Logic Programming (ILP)
systems provide the most general-purpose framework for dealing with such data:
there are explicit provisions made for the inclusion of background knowledge of
any form; the representation language is powerful enough to capture the con-
textual relationships that arise; and modeling is not restricted to being of a
particular form (for example, classification only).

In this paper, we investigate the use of ILP for WSD in two different ways: (a)
the construction of models that can be used directly to disambiguate words; and
(b) the construction of interesting features that can be used by standard feature-
based algorithms such as SVMs to build models to disambiguate verbs. We call

1 see: http://www.senseval.org

http://www.senseval.org
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the two different kinds of models “ILP models” and “ILP-assisted models”. In
each case, background knowledge is from eight different sources that provide
syntactic and semantic information that could be useful for disambiguation. The
purpose of our investigation is to examine whether using an ILP system equipped
with these diverse sources of background information can substantially improve
the predictive accuracy of WSD models. Our investigation is in the form of an
empirical evaluation of ILP models and ILP-assisted models on WSD data arising
from two different tasks: (1) monolingual disambiguation of 32 English verbs
contained in SENSEVAL-3; and (2) bilingual disambiguation of the Portuguese
sense of 7 highly ambiguous English verbs in a translation task.

The rest of the paper is organized as follows. In Section 2 we present some
related work on WSD. The specification of ILP implementations that construct
ILP models and features for use in ILP-assisted models is in Section 3. The
experimental evaluation comprising our investigation is described in Section 4.
This includes materials (Section 4.1) and methods (Section 4.2). Results are
presented in Section 5. Section 6 concludes the paper.

2 Models for Word Sense Disambiguation

The earliest computer-executable models for WSD are manually constructed,
capturing specific aspects of human disambiguation expertise in symbolic struc-
tures like semantic networks [23] and semantic frames [5,6,12]. Early reports
also exist of sub-symbolic neural networks [4]. Most of these techniques have
suffered from the important difficulty in manual acquisition of expert knowledge
identified by Feigenbaum (and somewhat anticipated, in the WSD context [2]),
resulting in their application being limited to very small subsets of the languages.

The development of machine readable resources like lexical databases, dic-
tionaries and thesauri has provided a turning point in automatic processing of
natural language, enabling the development of techniques that used information
extracted automatically from these resources [11,25,1,32]. While the resources
provided ready access to large bodies of knowledge, the actual disambiguation
models continued to be manually codified. This changed with the use of sta-
tistical and machine-learning techniques for constructing models. The charac-
teristic of these methods is the use of a corpus of examples of disambiguation
to automatically construct disambiguation models. The most common of these
“corpus-based” techniques employ statistical methods that build models based
on features representing frequencies estimated from a corpus, for example, fre-
quencies of some words on either side of the ambiguous word [33,16,26,21]. While
techniques using such “shallow” features referring to the local context of the am-
biguous word have yielded the best models so far, the accuracies obtained are
low, and significant improvements do not appear to be forthcoming.

More sophisticated corpus-based approaches such as [31] try to incorporate
deeper knowledge using machine readable resources. These are special-purpose
methods aimed at specific tasks and it is not clear how they could be scaled-
up for use across a wide range of WSD tasks. ILP provides a general-purpose
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approach that can be tailored to a variety of NLP tasks by the incorporation of
appropriate background knowledge. To date, [28] is the only work dealing with
the use of ILP for WSD. The work here extends this substantially in terms of
experimental results; and in exploring alternate ways of using ILP for WSD.

3 Inductive Logic Programming

Functionally, Inductive Logic Programming (ILP) can bee largely characterised
by two classes of programs. The first, predictive ILP, has been concerned with
constructing models (sets of rules; or first-order variants of classification or re-
gression trees) for discriminating accurately amongst two sets of examples (“pos-
itive” and “negative”). The partial specifications provided by [17] have formed
the basis for deriving programs in this class. We refer the reader to [19] for
definitions of the logical terms used below:

– B is background knowledge consisting of a finite set of clauses = {C1, C2, . . .}
– E is a finite set of examples = E+ ∪ E− where:

• Positive Examples . E+ = {e1, e2, . . .} is a non-empty set of definite
clauses;

• Negative Examples . E− = {f1, f2 . . .} is a set of Horn clauses (this may
be empty)

– H , the output of the algorithm given B and E is acceptable if the following
conditions are met:
• Prior Satisfiability. B ∪ E− �|= �

• Posterior Satisfiability. B ∪H ∪ E− �|= �;
• Prior Necessity. B �|= E+

• Posterior Sufficiency. B ∪H |= e1 ∧ e2 ∧ . . .

The second category of ILP programs, descriptive ILP, has been concerned
with identifying relationships that hold amongst the background knowledge and
examples, without a view of discrimination. The partial specifications for pro-
grams in this class are based on the description in [18]:

– B is background knowledge consisting of a finite set of clauses = {C1, C2, . . .}
– E is a finite set of examples (this may be empty)
– H , the output of the algorithm given B and E is acceptable if the following

condition is met:
• Posterior Sufficiency. B ∪H ∪ E �|= �

The idea of using a feature-based model constructor that uses first-order fea-
tures can be traced back at least to the LINUS program [10]. More recently,
the task of identifying good features using a first-order logic representation has
been the province of programs developed under the umbrella of “propositional-
ization” (see [8] for a review). Programs in this class are not easily characterised
as either predictive or descriptive ILP and we have not found explicit specifi-
cations for them within the ILP literature. Conceptually, solutions involve two
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steps: (1) a feature-construction step that identifies (within computational rea-
son) all the features that are consistent with the constraints provided by the
background knowledge. This is characteristic of a descriptive ILP program; and
(2) a feature-selection step that retains some of the features based on their utility
in classifying the examples. This is characteristic of a predictive ILP program.
To this extent, we present partial specifications for feature construction that
reflect a combination of the two dominant categories of ILP programs:

– B is background knowledge consisting of a finite set of clauses = {C1, C2, . . .}
– E is a finite set of examples = E+ ∪ E− where:

• Positive Examples . E+ = {e1, e2, . . .} is a non-empty set of definite
clauses;

• Negative Examples . E− = {f1, f2 . . .} is a set of Horn clauses (this may
be empty)

– H is the set of definite clauses, constructible with predicates, functions and
constants in B ∪ E; F the set of features constructible using a set of indi-
viduals and B; and τ : H *→ F a function that maps a definite clause h ∈ H
to a feature f ∈ F .

– F = {f1, f2, . . .} ⊆ F , the output of the algorithm given B and E is ac-
ceptable for any set H = {h1, h2, . . .} ⊆ H if the following conditions are
met:
• Posterior Sufficiency. B ∪ {hi} |= e1 ∨ e2 ∨ . . ., where {e1, e2, . . .} ⊆ E+

• fi = τ(hi)

The reader would have noted the principal differences in the 3 Posterior Suffi-
ciency constraints. For feature construction—for the purposes of this paper—
clauses identified are required to entail at least one positive example given B.
Obviously more would be better, but this specification is a minimal one. This is
not the case for descriptive ILP, and clearly insufficient for the predictive case.

We still need to clarify the meanings of F , H and τ . For the purposes of
this paper, we will assume that the boolean values FALSE and TRUE are
represented by 0 and 1; the features fi are functions of the form fi : X *→ {0, 1};
and examples E are some subset of the binary relation X ×Y, where X denotes
the set of individuals and Y some finite set of classes. Positive and negative
examples are represented by the predicate class : X × Y *→ {0, 1} and we will
take each hi ∈ H to be a definite clause class(X, yk) ← cpi(X), where X is
a variable and yk is some class in Y. Here, adopting terminology from [24],
cpi : X *→ {0, 1} is a “context predicate” and corresponds to a conjunction
of literals that evaluates to true or false for any particular individual x. With
these preliminaries in place, given hi : class(X, yk) ← cpi(X), fi(x) = τ(hi) =
1 iff cpi(x) = 1 (and 0 otherwise).

Given a set of examples represented by individuals and their classes, a program
for feature construction that minimally satisfies this specification would proceed
as follows. First, a set of clauses H is identified for the individuals. Each clause
in this set entails at least one positive example, given the background knowledge
B. Next, each clause hi in H is converted into a boolean feature fi that takes
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the value 1 (or 0) for any individual for which the body of the clause is true (if
the body is false). Thus, the set of clauses H gives rise to a boolean vector for
each individual in the set of examples. Examples in the WSD context are shown
in Figure 1.

Clause:
h1 : class(X, voltar) : −has expression(X, ’come back ’, voltar)

has pos(X, pcwr 4, nn)

Feature:

f1(X) =

�
1 has expression(X, ’come back ’, voltar) ∧ has pos(X, pcwr 4, n) = 1
0 otherwise

Fig. 1. Example of a boolean feature constructed from a clause for WSD. The clause
in Prolog syntax identifies the Portuguese sense of the English verb ‘to come’. The
meanings of has expression and has pos are explained in Section 4.

4 Empirical Evaluation

Our objectives are to evaluate empirically the use of ILP in constructing models
for WSD. Specifically, we intend to investigate the performance of two kinds of
models:

1. ILP models . These are models constructed by an ILP system for predict-
ing the correct sense of a word, by an implementation conforming to the
specification for predictive ILP systems in Section 3.

2. ILP-assisted models . These are models for predicting the correct sense of a
word that, in addition to existing shallow features, use features constructed
by an ILP system. They are constructed by an implementation conforming
to the specification for feature construction in Section 3.

4.1 Materials

Data

Monolingual task. Data consist of the 32 verbs from the SENSEVAL-3 com-
petition. SENSEVAL2 is a joint evaluation effort for WSD and related tasks.
We use all the verbs of the English lexical sample task from the third and
last edition of the competition: activate, add, appear, ask, begin, climb, de-
cide, eat, encounter, expect, express, hear, lose, mean, miss, note, operate,
play, produce, provide, receive, remain, rule, smell, suspend, talk, treat, use,
wash, watch, win, and write. The number of examples for each verb varies
from 40 to 398 (average of 186). The number of senses varies from 3 to 12
(average of 7). The average accuracy of the majority class is about 55%. We
refer the reader to [13] for more information about the SENSEVAL-3 data.

2 http://www.senseval.org

http://www.senseval.org
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Bilingual task. Data consist of 7 highly frequent and ambiguous verbs: come,
get, give, go, look, make, and take. The sample corpus comprises around 200
English sentences for each verb extracted from a corpus of fiction books,
with the verb translation automatically annotated [29]. In that corpus, the
number of translations varies from 5 to 17, with an average of 11 translations.
The average accuracy of the majority class is about 54%.

Background Knowledge. To achieve accurate disambiguation is believed to
require a variety of syntactic and semantic information. In what follows, we
describe the background knowledge available for the tasks and illustrate it using
the following sentence (assuming that we want to disambiguate ‘coming’):

”If there is such a thing as reincarnation, I would not mind coming back
as a squirrel”.

B0. Shallow features . Features corresponding to the predicates in B1-B5, con-
veying the same information, but represented by attribute-value vectors.

B1. Bag-of-words. The 5 words to the right and left of the verb, extracted
from the corpus and represented using definitions of the form has bag
(sentence, word):

has bag(snt1, mind).
has bag(snt1, not). . . .

B2. Narrow context. Lemmas of 5 content words to the right and left of the verb,
extracted from the corpus, previously lemmatized. These are represented
using definitions of the form has narrow(sentence, wordposition, word):

has narrow(snt1, f irst content word left, mind).
has narrow(snt1, f irst content word right, back). . . .

B3. Part-of-speech tags. Part-of-speech (POS) tags of 5 content words to the
right and left of the verb, obtained using MXPOST [24] and represented
using definitions of the form: has pos(sentence, wordposition, pos):

has pos(snt1, f irst content word left, nn).
has pos(snt1, f irst content word right, rb). . . .

B4. Subject-Object relations. Subject and object syntactic relations with respect
to the verb. These were obtained from parsing sentences using MINIPAR
and represented using definitions of the form has rel(sentence, type, word):

has rel(snt1, subject, i).
has rel(snt1, object, nil). . . .

B5. Word collocations. 11 collocations with respect to the verb: 1st preposition
to the right, 1st and 2nd words to the left and right, 1st noun, 1st adjective,
and 1st verb to the left and right. These are represented by definitions of
the form has collocation(sentence, collocation type, collocation):
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has collocation(snt1, f irst word right, back).
has collocation(snt1, f irst word left, mind). . . .

B6. Verb restrictions. Selectional restrictions of the verbs, defined in terms of
the semantic features of their arguments in the sentence, extracted from
LDOCE [22]. A hierarchy of feature types and WordNet relations are used to
make the process more comprehensive. These are represented by definitions
of the form satisfy restrictions(sentence, rest subject, rest object):

satisfy restrictions(snt1, [human], nil).
satisfy restrictions(snt1, [animal, human], nil).

B7. Dictionary definitions. A relative count of the overlapping words in dictio-
nary definitions of each of the possible translations of the verb (from [20])
and the words surrounding it in the sentence. These are represented by facts
of the form has highest overlap(sentence, translation):

has highest overlap(snt1, voltar).

B8. Phrasal verbs. Phrasal verbs possibly occurring in a sentence, according to
the list of phrasal verbs given by dictionaries and the context of the verb
(5 surrounding words). These are represented by definitions of the form
has expression(sentence, verbal expression):

has expression(snt1, ’come back’).

Of these definitions, B0 is intended for use by a feature-based model constructor.
B1–B8 are intended for use by an ILP system. The ILP implementation we use
is capable of exploring intensional definitions of each of B1–B8. However, it is
more efficient to represent the definitions in an extensional form (that is, as a set
of ground facts). The background knowledge B1–B8 amount to about 204, 000
ground facts for the monolingual task and 24, 000 for the bilingual task.

Algorithms. We use implementations within the ILP system Aleph [30] to
construct disambiguation models and to construct features. Feature-based model
construction is performed by a linear SVM (the implementation provided in
WEKA called SMO3). For convenience, we will call the Aleph implementation
the “ILP learner” and the SVM implementation the “feature-based learner.”

4.2 Method

We adopt the following method:

For each verb in each task (that is, 32 verbs in the monolingual task and 7
verbs in the bilingual task):

3 http://www.cs.waikato.ac.nz/~ml/weka/

http://www.cs.waikato.ac.nz/~ml/weka/
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1. Obtain the best possible model using the feature-based learner and the
features in B0. Call this the “baseline model”4.

2. Obtain the best possible model using the ILP learner, equipped with
background knowledge definitions B1–B8. Call this the “ILP model”.

3. Construct at most k features using the ILP learner, equipped with back-
ground knowledge definitions B1–B8. Call these features “B9”.

4. Obtain the best model possible using the feature-based learner with fea-
tures in B0 and B9. Call this the “ILP-assisted model”.

5. Compare the performance of the baseline model against that of the ILP
model and the ILP-assisted model.

The following details are relevant:

(a) The SENSEVAL-3 benchmark specifies 34% of the data that are to be used
to estimate the performance of disambiguation models. For uniformity, we
randomly use 34% of the bilingual data for evaluation (the test set). The
remaining 66% in each task is available for model construction (the training
set). Performance will be measured by the accuracy of prediction on the test
set (i.e., the percentage of test examples whose sense is predicted correctly).

(b) The ILP learner constructs a set of clauses in line with the specifications
for predictive ILP as described in Section 3. Positive examples for the ILP
learner are provided by the correct sense of the verb in a sentence. Negative
examples are generated automatically using all other senses. The specifica-
tions do not, however, describe how the clauses constructed are to be used
to predict the sense or translation of verbs in the test data. Clauses are
evaluated in order of their identification by the ILP learner and the class of
an example is determined by the first clause for which literals in the body
are satisfied by the example. If no such clause exists, then the example is
assigned the majority class, as computed on the training data.

(c) For each verb and task, constructing the “best possible model” requires
determining optimal values for some parameters of the feature-based or ILP
learner. We estimate these values using an instance of the method proposed
in [7]: first, we decide on the relevant parameters. Second, we obtain, using
the training set only, unbiased estimates of the predictive accuracy of the
models for each verb arising from systematic variation across some small
number of values for these parameters. Values that yielded the best average
predictive accuracy across all verbs are taken to be optimal ones.

(d) The principal parameter for the feature-based learners concerns the extent of
feature-selection to be performed. Values experimented with were: selecting
50, 100, 150, 200, 250, 500 or all features. For the monolingual task the best
average accuracy for baseline models was obtained with 150 features; and
with 250 features for the ILP-assisted case. For the bilingual task, the best

4 The term “baseline” is not used in a pejorative sense: models constructed with
shallow features of the form in B0 in fact represent the state-of-the-art, and any
other techniques would have to perform at least as well as these.
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average accuracy for baseline models used all features. The ILP-assisted mod-
els case required 500 features. For the ILP-learner, the principal parameters
selected were: the choice between a greedy and non-greedy rule construction
strategy (induce and induce max in Aleph); the maximal length of clauses;
and the minimum accuracy of clauses. For both tasks, the best average ac-
curacies were obtained with the non-greedy strategy, in conjunction with a
maximal clause length of 8 literals. The best minimal clause accuracy was
1.0 for the monolingual task, and 0.8 for the bilingual task.

(e) In all cases, the value of k (the number of features constructed) is 5000.
(f) Comparison of performance is done using the Wilcoxon signed-rank test [27].

This is a non-parametric test of the null hypothesis that there is no signifi-
cant difference between the median performance of a pair of algorithms. The
test works by ranking the absolute value of the differences observed in per-
formance of the pair of algorithms. Ties are discarded and the ranks are then
given signs depending on whether the performance of the first algorithm is
higher or lower than that of the second. If the null hypothesis holds, the sum
of the signed ranks should be approximately 0. The probabilities of observ-
ing the actual signed rank sum can be obtained by an exact calculation (if
the number of entries is less than 10), or by using a normal approximation.

5 Results and Discussion

Figures 2 and 3 tabulate the performance of baseline, ILP, and ILP-assisted
models—these two collectively termed ILP-based models—on the two disam-
biguation tasks. It is also standard practice to include the performance of a
classifier that simply predicts the most frequent sense of the verb. The principal
details in these tabulations are these: (1) The “majority class” classifier clearly
performs poorest; (2) For both tasks, the accuracies of the baseline models are
usually lower than the ILP-based models. Discarding ties, the baseline model
has the highest accuracy only for 5 of the 32 verbs in the monolingual task and
for 0 of the 7 verbs in the bilingual task; (3) ILP models and ILP-assisted mod-
els appear to be comparable in their performance in the monolingual task, while
ILP models are uniformly better than ILP-assisted models for the bilingual task.

We turn now to the question of whether the differences observed between the
models are in fact significant. The probabilities calculated by using the Wilcoxon
test are shown in Fig. 4. The tabulations suggest that one or the other of the
ILP-based models perform substantially better than the baseline or majority
class models. However, they also suggest that a simple choice between ILP and
ILP-assisted models is not evident: ILP-assisted models appear to be the best
choice for the monolingual task and it is evident that ILP models are uniformly
best for the bilingual task.

It is curious that the two ILP-based approaches are comparable on the mono-
lingual task and are completely incommensurate on the bilingual task. Closer
study of the performance of the ILP model reveals the substantial role of the
default rule predicting the majority class (as described in Section 4.2). Removal
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Verb Senses Accuracy
Majority class Baseline ILP ILP-assisted

activate 5 82.46±3.56 85.09±3.34 52.63±4.68 83.33±3.49
add 6 45.80±4.35 82.44±3.32 73.28±3.87 82.44±3.32
appear 3 44.70±4.33 68.18±4.05 87.88±2.84 71.21±3.94
ask 6 27.78±3.99 53.17±4.45 40.48±4.37 50.00±4.45
begin 4 59.74±5.59 57.14±5.64 55.84±5.66 74.03±5.00
climb 5 55.22±6.08 71.64±5.51 59.70±5.99 83.58±4.53
decide 4 67.74±5.94 77.42±5.31 77.42±5.31 77.42±5.31
eat 7 88.37±3.46 88.37±3.46 83.72±3.98 87.21±3.60
encounter 4 50.77±6.20 73.85±5.45 67.69±5.80 72.31±5.55
expect 3 74.36±4.94 75.64±4.86 79.49±4.57 92.31±3.02
express 4 69.09±6.23 67.27±6.33 70.91±6.12 72.73±6.01
hear 7 46.88±8.82 53.13±8.82 65.62±8.40 65.63±8.40
lose 9 52.78±8.32 58.33±8.22 55.56±8.28 58.33±8.22
mean 7 52.50±7.90 77.50±6.60 55.00±7.87 70.00±7.25
miss 8 33.33±8.61 36.67±8.80 56.67±9.05 33.33±8.61
note 3 38.81±5.95 58.21±6.03 82.09±4.68 88.06±3.96
operate 5 16.67±8.78 72.22±10.56 83.33±8.78 77.78±9.80
play 12 46.15±6.91 53.85±6.91 46.15±6.91 53.85±6.91
produce 6 52.13±5.15 63.83±4.96 75.53±4.43 67.02±4.85
provide 6 85.51±4.24 89.86±3.63 88.41±3.85 89.86±3.63
receive 9 88.89±6.05 88.89±6.05 92.59±5.04 88.89±6.05
remain 3 78.57±4.90 84.29±4.35 80.00±4.78 87.14±4.00
rule 5 50.00±9.13 66.67±8.61 86.67±6.21 83.33±6.80
smell 7 40.74±6.69 79.63±5.48 68.52±6.32 77.78±5.66
suspend 7 35.94±6.00 60.94±6.10 60.94±6.10 57.81±6.17
talk 9 72.60±5.22 73.97±5.14 73.97±5.14 73.97±5.14
treat 9 28.07±5.95 40.35±6.50 57.89±6.54 47.37±6.61
use 5 71.43±12.07 85.71±9.35 92.86±6.88 92.86±6.88
wash 12 67.65±8.02 70.59±7.81 61.76±8.33 73.53±7.57
watch 7 74.51±6.10 74.51±6.10 76.47±5.94 74.51±6.10
win 7 44.74±8.07 52.63±8.10 47.37±8.10 60.53±7.93
write 8 26.09±9.16 52.17±10.42 56.52±10.34 34.78±9.93

Mean 7 55.31 68.56 69.15 71.97
Median 6 52.31 71.11 69.71 74.03

Fig. 2. Estimates of accuracies of disambiguation models on the monolingual task.
“Senses” refers to the numbers of possible senses of each verb. “Majority class” gives
the accuracy of models that simply predict the most common sense of each verb. The
entries in boldface represent the highest accuracy obtained for a verb.

of this rule lowers the ILP column’s median accuracy by about 11% for the
monolingual task and 8% for the bilingual task (the two ILP-based methods
are then comparable on the bilingual task). Since it is not evident that the
use of the default rule will always yield such beneficial results to the ILP model,
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Verb Translations Accuracy
Majority class Baseline ILP ILP-assisted

come 11 50.30±7.62 67.44±7.15 86.67±5.07 76.74±6.44
get 17 21.00±6.70 32.43±7.70 51.28±8.00 40.54±8.07
give 5 88.80±4.81 97.67±2.30 97.78±2.20 95.35±3.21
go 11 68.50±6.78 72.34±6.52 85.71±5.00 78.72±5.97
look 7 50.30±7.45 77.78±6.20 82.98±5.48 82.22±5.70
make 11 70.00±7.25 75.00±6.85 76.19±6.57 75.00±6.85
take 13 28.50±8.24 46.67±9.11 62.50±8.56 60.00±8.94

Mean 11 53.91 67.05 77.59 72.65
Median 11 50.30 72.34 82.98 76.74

Fig. 3. Estimates of accuracies of disambiguation models on the bilingual task. “Trans-
lations” refers to the numbers of possible translations of each verb into Portuguese.

Majority class Baseline ILP

Baseline < 0.001, 0.020 − −
ILP < 0.001, 0.020 0.849, 0.020 −

ILP-assisted < 0.001, 0.020 0.037, 0.075 0.134, 0.020

Fig. 4. Probablities of observing the differences in accuracies for the monolingual and
bilingual tasks, under the assumption that median accuracies of the pair of algorithms
being compared are equal. Each entry consists of a pair of probability estimates, cor-
responding to the mono and bilingual tasks.

and ILP-assisted models do not require such a rule, the ILP-assisted approach
probably represent a more reliable route for constructing WSD models.

For the monolingual task, we are also able to compare the performance of
ILP-based models to those of models produced by the best supervised techniques
for the same data. SENSEVAL’s evaluation software provides estimates on the
performance of the systems according to two different levels of sense distinction:
fine and coarse-grained. The former comprises average accuracies in the normally
understood sense. Comparative results with the best systems from the various
sites which participated in SENSEVAL’s lexical sample subtask are shown in
Fig. 5. Syntalex-3 [15] is based on an ensemble of bagged decision trees with
narrow context part-of-speech features and bigrams. CLaC1 [9] uses a Naive
Bayes algorithm with a dynamically adjusted context window around the target
word. Finally, MC-WSD [3] is a multi-class averaged perceptron classifier using
syntactic and narrow context features, with one component trained on the data
provided by Senseval and other trained on WordNet glosses. As we can see,
among all the approaches, ILP-based models are outperformed only by MC-
WSD and therefore it is evident that these models are comparable to the state-
of-the-art in the field. In practice, we believe that all these methods would be
able to use features constructed by an ILP system. With that, improvements in
their performance similar to those seen from the baseline classifier could follow.
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Models Accuracy
MC-WSD 72.50
ILP-assisted 71.97
ILP 69.15
Syntalex-3 67.60
CLaC1 67.00

Fig. 5. Comparative average fine-grained accuracies of the best models reported for
the SENSEVAL-3 competition

6 Concluding Remarks

Word sense disambiguation, a necessary component for a variety of natural lan-
guage processing tasks, remains amongst the hardest to model adequately. It is
of course possible that the vagaries of natural language may place a limit on the
accuracy with which a model could identify correctly the sense of an ambigu-
ous word, but it is not clear that this limit has been reached with the modelling
techniques that constitute the current state-of-the-art. The performance of these
techniques depends largely on the adequacy of the features used to represent the
problem. As it stands, these features are usually hand-crafted and largely of a
syntactic nature. For substantial, scalable progress it is believed that knowledge
that accounts for more elaborate semantic information needs to be incorporated:
however, no adequate general-purpose techniques have been forthcoming. In this
paper, we have investigated the use of Inductive Logic Programming as a mech-
anism for incorporating multiple sources of syntactic and semantic information
into the construction of models for WSD. The investigation has been in the
form of empirical studies of using ILP to construct models for monolingual and
bilingual WSD tasks and the results suggest that the use of ILP can improve
predictive accuracies. These studies represent the first extensive application of
ILP to the task of constructing WSD models.

We believe much of the gains observed with ILP stems from the use of sub-
stantial amounts of background knowledge. This knowledge has been obtained
by translations of information in standard corpora or electronic lexical resources.
This is promising, as it suggests that these translators, in conjunction with ILP,
may provide a set of tools for the automatic incorporation of deep knowledge
into the construction of general WSD models. Turning specifically to the tasks
addressed here, further improvements could be achieved with the inclusion of
other kinds of background knowledge. For example, for the bilingual task, the
“translation context” for a verb may help greatly. This refers to the translations
into the target language of the words forming the context of the verb.

On the basis of results achieved here there is little to chose between ILP-
models and ILP-assisted models, although we believe that the latter may provide
a more reliable approach for constructing WSD models. There does not appear
to be any inherent limitation in using a feature-based representation for verb
disambiguation: a finding that may extend to other WSD tasks. The key is to
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get a good set of features, and results here suggest that ILP could provide a
reliable method of identifying these.
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Abstract. Model trees are a special case of regression trees in which
linear regression models are constructed in the leaves. Little attention has
been paid to model trees in relational learning, mainly because the task of
learning linear regression equations in this context involves dealing with
non-determinacy of predictive attributes. Whereas existing approaches
handle this non-determinacy issue either by selecting a single value or
by aggregating over all values, in this paper we present a model tree
learning system that combines both.

1 Introduction

Model trees are regression trees that contain some non-trivial, usually linear,
model in their leaves. In the propositional case, they have been shown to be able
to increase predictive performance compared to regression trees that predict the
same constant value for each example falling into the same leaf [1,2,3,4,5,6].

In this paper we investigate the use of model trees in ILP (inductive logic
programming, [7]). While classification and regression trees have been around
in ILP for several years now [8,9,10], less can be said about model trees. This
may be due to the issues arising when learning a linear regression function in
the relational context. Since individuals are related to other objects via one-to-
many or many-to-many relationships, the predictive attributes to be included in
a regression function may be non-determinate: there may be several instances
of them related to the target value. We distinguish a number of approaches to
handle non-determinate predictive attributes in regression functions:

1. do not use non-determinate attributes [10]
2. assume one of the instances is relevant

(a) and it can be specified with conditions [11]
(b) and it can not be specified [12,13]

3. summarize the instances
(a) using simple aggregate functions defined in advance [14]
(b) using complex aggregate functions

Complex aggregate functions [15,16] are expressed as F(σC(R)) in relational
algebra, with F an aggregate function (e.g., exists, max, min, count, ...), σC(R)
a selection function based on a condition C, and R a set of tuples somehow
connected to the tuple we want to classify. They are thus a combination of

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 424–438, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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aggregates and selections and therefore approach 3(b) generalizes approaches
2(a) and 3(a). For example, min{A|child(P, Ch), age(Ch, A), blue eyes(Ch)} is
a complex aggregate which takes the minimum age of a person’s children that
have blue eyes. In this aggregate, blue eyes(Ch) is the selection condition C.

It has been studied how complex aggregates can be efficiently learned to be
included in the condition part of a hypothesis [17]. In that work, complex aggre-
gate conditions are learned general-to-specific, subsequently reducing the cover-
age of the hypothesis. It is still an open problem how complex aggregates can be
learned in the conclusion part of a hypothesis (e.g., when the conclusion part is
a regression function).

In this paper, we present a model tree system that constructs regression func-
tions with complex aggregates in the leaves. These complex aggregates are not
learned at the leaves, but are included in the regression model of a leaf if a linear
effect with the target was shown on the path from the root to the leaf. It has
been shown [3,6] that model tree learners produce good results if their heuristic
function takes linear models into consideration. Most (propositional and rela-
tional) systems that use such a heuristic are quadratic [1] or cubic [2,3,14] in
the number of numeric attributes. Since we want to include complex aggregates
in the search, the number of numeric attributes can become very large, which
renders existing systems infeasible to use. Therefore, an important requirement
for our system is an efficient heuristic function.

In Sect. 2 we present some related work. Section 3 presents our system in
detail. Section 4 presents experimental results. In Sect. 5 we conclude.

2 Related Work

The task of relational regression was formalized by Džeroski [18] in the normal
ILP framework. This work presents the transformation based system Dinus,
which is the first ILP system to address the task of relational regression. The
induction is delegated to a propositional learner. Using a model tree learner as
Retis [2], linear regression is used in the model output by Dinus.

Fors [11] is the first system able to predict numbers with non-determinate
background knowledge. It is a sequential covering approach that learns rules
that contain linear regression models. Non-determinacy among the predictive
attributes is handled by testing for the existence of a specific instance giving a
number of conditions. If the conditions succeed for more than one instance, the
value of the first of these instances is taken.

Tilde [8] and Srt [9] are first order regression tree learners. S-Cart [10], the
successor of Srt, is capable of including linear models in the leaves. The use of
non-determinate predictors in these linear models is not supported. The model
trees induced by S-Cart are built by first constructing a normal regression tree
(using a standard variance reduction heuristic), and afterwards replacing the
constant predictions by linear models. This heuristic has been shown to produce
sub-optimal model trees in the sense that it tends to split the data set in the
wrong places and results in trees that are larger than necessary [3,6,19].
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Appice et al. [14] present a system called Mr-Smoti which is a relational
upgrade of their propositional Smoti model tree algorithm [3]. The Smoti algo-
rithm is different from most model tree inducers in the sense that the multiple
linear model that is associated with the leaves is built incrementally from simple
linear regression models. These models are introduced by so-called regression
nodes occurring in the tree. Each regression node thus adds one term to the
multiple regression model and requires updating the target value and other con-
tinuous attributes in order to remove the linear effect of the introduced term.
To determine the coefficients of a simple linear regression model in a regression
node, the problem is locally transformed into a propositional problem by joining
the tables from the underlying relational database structure, and normal least
squares is applied on this flattened table. Note that this propositionalisation
step gives examples that have a higher number of related objects more weight
in the least squares procedure. The predicted value for unseen examples is the
average prediction for all instances in the propositional representation of the
example. Contrary to the efficient methods as S-Cart, the systems Smoti and
Mr-Smoti have a high computational complexity. This is due to the heuristic
function, which takes into account the fact that linear models are built. It is
discussed in more detail further in the paper.

3 ReMauve

In this section we present a relational model tree system that is more efficient
than Mr-Smoti, but still uses a heuristic function that takes into account the
fact that linear models are constructed at the leaves. Moreover, these mod-
els may contain complex aggregates. The system is a relational upgrade of the
propositional system Mauve [6], and is called ReMauve (Relational Mauve).

3.1 Mauve: A Propositional Model Tree Learner

Mauve [6] is a model tree inducer that operates on a single table. It takes as
input a number of training examples ei (i = 1..n) of the form (xi1, xi2, ..., xim, yi),
where each xij denotes the value for the j-th independent attribute Xj (j =
1..m), and yi is the value for the dependent (target) attribute Y . Y is numeric,
while the Xj can be numeric or nominal. The system outputs a model tree where
each leaf contains a multiple linear regression model that predicts the target in
relation to all numeric independent attributes in the table. Mauve is a TDIDT
approach, thus the model tree is built top-down, recursively splitting the training
examples according to some condition on the independent attributes.

To estimate the quality of a candidate split, Mauve proceeds as follows. If
the split contains a nominal attribute, the heuristic function is the same as in
normal regression trees: the weighted average of the standard deviations in both
child nodes, i.e.,

heur nom(T ) =
|El|
|E| SD(El) +

|Er|
|E| SD(Er),
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where E denotes the set of examples at node T , El and Er denote the sub-
sets of E associated with the left and right child node of T , and SD(Em) =√∑

ei∈Em
(yi − ym)2/|Em|, with ym the sample mean of the target attribute in

the examples Em. If the split concerns a numeric attribute, instead of taking the
standard deviation, the residual standard deviation is used, i.e., the root of the
mean squared errors calculated w.r.t. a simple linear regression line constructed
in the target attribute. The predictive attribute used in the simple regression
function is the attribute used in the split. The heuristic of a numeric split at
node T is thus

heur num(T ) =
|El|
|E| RSD(El) +

|Er|
|E| RSD(Er),

with RSD(Em) =
√∑

ei∈Em
(yi − (αmxik + βm))2/|Em|, where αm and βm are

estimated using least squares and Xk is the split attribute at T , i.e., the split
takes the form Xk ≤ V or Xk ≥ V with V some value in the domain of Xk.
The split that minimizes this heuristic function (heur nom(T ) or heur num(T ),
respectively) is chosen to split T .

3.2 Upgrading Mauve to Relational Learning

In this section we discuss how Mauve is upgraded to a relational model tree
learner. We first describe the relational regression tree learning system that we
start from and afterwards discuss several aspects of the algorithm.

Tilde-RT: A Relational Regression Tree Learner. Tilde [8] is a rela-
tional top-down induction of decision trees (TDIDT) instantiation, and outputs
a first order decision tree, i.e., a decision tree that contains a first order query in
the internal nodes. The algorithm is included in the ACE-ilProlog data mining
system [20]. Tilde learns both classification and regression trees. The regression
tree subsystem is usually denoted by Tilde-RT.

Tilde-RT’s procedure to grow a tree is given in Table 1. It takes as input
the training examples E and a query Q that corresponds to the empty query.
In the recursive calls of the algorithm, Q will represent the conjunction of all
succeeding tests from the root of the tree to the node being split. This query will
be referred to as the current query. The procedure to grow a node T is as follows.
First, a refinement operator generates the set of candidate splits. This set is
determined by the language bias given by the user, and by the variables occurring
in the current query at T . The refinement operator typically operates under
θ-subsumption [21] and generates candidates by extending the current query
with a number of new literals. Next, the optimal split procedure executes all
candidates on the set of examples E, estimating the quality of each candidate,
and returns the best candidate Qb. The quality of a candidate is calculated using
a simple heuristic function, similar to Mauve’s heur nom1. The candidate Qb

1 In fact, the sum of squared errors is used instead of standard deviation, and an F-test
is used to decide whether an improvement is obtained w.r.t. the parent node.
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Table 1. Tilde-RT algorithm for first order logical regression tree induction [8]

procedure GROW TREE (E: examples, Q: query):
candidates := ρ(← Q)
← Qb := OPTIMAL SPLIT(candidates,E)
if STOP CRIT (←Qb, E)
then

K := PREDICT(E)
return leaf(K)

else
conj := Qb − Q
E1 := {e ∈ E|←Qb succeeds in e ∧ Background}
E2 := {e ∈ E|←Qb fails in e ∧ Background}
left := GROW TREE (E1, Qb)
right := GROW TREE (E2, Q)
return node(conj, left, right)

is chosen to split the examples. The conjunction put in the node T consists of
Qb − Q, i.e., the literals that have been added to Q in order to produce Qb.
In the left branch, Qb will be further refined, while in the right branch Q is to
be refined. When the stop criterion holds (typically, this is when a predefined
minimum number of examples is reached), a leaf is built. The predict procedure
returns the mean target value of the examples E.

Van Assche et al. [16] described how to add (complex) aggregates to the set of
candidate splits generated by the refinement operator. This may result in a very
large refinement space and it was shown by Vens et al. [17] how the aggregate
conditions can be efficiently executed on the examples.

Adapting Tilde-RT’s Heuristic Function. We replaced Tilde-RT’s heuris-
tic function by Mauve’s heur nom for nominal, and heur num for numeric splits.

For the heur num function, an important issue to deal with concerns the multi-
valuedness of the numeric split attribute to be introduced in the regression func-
tions for the RSD calculations. An attribute is determinate if it has exactly one
value for each example. It is non-determinate if it may have 0, 1, or more values
for each example. For example, the age of a person is determinate, whereas the
age of a person’s children is non-determinate. Non-determinacy or multivalued-
ness occurs when an example is related to a set of objects via one-to-many or
many-to-many relationships in the relational dataset. In general, two approaches
exist to deal with multi-valuedness. ILP systems usually test for the existence
of a specific element, thus, a split condition child(P, C), age(C, A), A < 18 cor-
responds to testing the existence of a child with age smaller than 18. Other
approaches [22,23,24] use aggregate functions (such as max, min, avg, sum,...)
to summarize the set of values. The following lemma shows that an ILP test is
semantically equivalent to an aggregate function [25]:
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Lemma 1. Let B be a bag of real numbers, and t some real value, then
∃v ∈ B : v ≥ t iff max(B) ≥ t, and
∃v ∈ B : v ≤ t iff min(B) ≤ t.

Using this lemma, every numeric attribute results for each example in one deter-
ministic value to feed to the simple linear regression models. The previous non-
determinate numeric attribute would become min{A|child(P, C), age(C, A)}.

Adapting Tilde-RT’s Predictive Function. In Mauve the leaves contain
a multiple linear regression function using all numeric attributes as predictors.
Adopting this strategy in ReMauve is not feasible: in relational learning the
number of numeric attributes becomes very high, especially when complex aggre-
gate conditions are taken into account. Therefore, we include a numeric attribute
in the predictive model of a leaf if it was chosen at a node on the path2 from the
root to the leaf. The underlying idea is that an attribute would not have been
chosen to split the dataset if it did not result in a linear relation with the target
in the child nodes.

Dealing with Global Effects. Consider an attribute that has a global lin-
ear effect on the target. Sooner or later in the tree building process this at-
tribute will give rise to a best split, with the same linear effect in both child
nodes and will thus generate a superfluous split in the model tree. While the
split is redundant, we do want to take into account this attribute in the pre-
dictive models at the leaves. Therefore, when the best test for a node N is
determined and is found to be a numeric split, the RSD is also calculated for
all examples at node N . If an F-test considers this RSD equal to the heuris-
tic value of the split, then we know that the linear effect between the split
attribute and the target holds in the complete set of examples at N , thus it
should be introduced in the predictive models in the leaves under N with-
out splitting the data at N . To deal with such global linear effects, we in-
troduce unary regression nodes that do not split the data, but only serve to
introduce an extra predictor in the linear regression function. The regression
nodes contain numeric attributes (without the > or < equation) and pass all
examples down to their unique child node. As for split nodes, variables oc-
curring in the attribute of a regression node can be used further down the
tree.

In relational learning, especially when aggregates are used, correlation be-
tween attributes often comes into play, either true or apparent [26]. For ex-
ample, in the task of predicting a person’s income, the income may increase
with the number of children. However, the number of children is correlated
with the number of daughters or with the sum of the ages of the children.
In our system, if the number of children is an attribute occurring in a re-
gression node, the probability of having an other regression node with the

2 Note that we use the numeric attributes on the complete path from the root to the
leaf, not only those from the current query which correspond only to the succeeding
tests.
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number of daughters is high. To avoid this, the linear effect of numeric attributes
occurring in the tree needs to be accounted for. Therefore, after introducing
a regression node or a numeric split node, we remove the linear effect of the
involved attribute A from the target, i.e., we pass on the residuals yi − ŷi with
ŷi = α ∗ A + β to the child node(s). In fact, the linear effect should also be
removed from all other numeric attributes that can still be used in the model.
Given the large number of such attributes, this is not feasible, and instead, when
building a regression node N we check whether the involved numeric attribute
A has a significant correlation with an attribute in a split or regression node on
the path from the root to N . If this is the case a leaf is built.

By introducing regression nodes, the analogy with Mr-Smoti increases. A
comparison between the two systems is given further in this section.

Stop Criterion. We implemented several stop criteria. The first one concerns
the minimal number of examples a leaf has to cover. Building a linear model
in k attributes in the leaves requires at least k + 1 examples. Therefore, after
refining a node T , we check whether each child node of T contains at least m+1
examples, where m is the number of numeric attributes occurring on the path
from the root to T . If this is not the case, T is made a leaf. The second stop
criterion calculates the SD of the target values, before they are updated to reflect
the linear effect of the best test. If this falls below a certain percentage (default
5%) of the original SD at the root node, a leaf is constructed. As a last stop
criterion, if the best test turns out to be nominal, an f-test checks whether the
corresponding SD value is significantly better than the SD value of the parent
node. If not, a leaf node is built. As stated before, for numeric tests, a regression
node is built in that case.

The pseudo code of the most important procedures of the algorithm is pre-
sented in Table 2.

Undefined Attributes. An issue that has not been mentioned in the descrip-
tion of the algorithm is what happens if an attribute is undefined for an example.
For example, the age of a person’s children is undefined for a person that has
no children, or the maximum age of a person’s sons is undefined if a person only
has daughters. Undefined attributes often occur when using complex aggregates:
the selection condition on the set to aggregate over can become so complex that
the aggregate is defined only for a few examples. In our system, in order to not
violate the monotonicity assumptions assumed by our refinement operator [17],
examples for which a split condition is undefined go to the right (failing) branch
of the tree. However, this is not sufficient: the heuristic function needs to have
a numeric value for each example in the node to be split (also for those going
to the right branch) and the linear equations in the leaves need to be able to
provide a prediction for each example. Therefore, whenever an explicit value for
an undefined attribute is needed (i.e., to calculate the heuristics or to build the
regression functions or make predictions in the leaves), we make use of a default
value. There are several possibilities for choosing a default value. We decided to
use a value that reduces as much as possible the influence of examples for which
the attribute is undefined. The exact values are:
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– F (∅) = avg(F (S1), F (S2), ..., F (Sn)) for F ∈ {max, min, avg, sum}
– mode(∅) = mode(mode(S1), mode(S2), ..., mode(Sn))

where Si is the set of values observed for the attribute for the i-th example and
n is the number of training examples at the node under consideration for which
the attribute is defined.

Table 2. ReMauve algorithm for first order logical model tree induction

procedure GROW TREE (E: examples, T : targets, Q: query, P : path):
candidates := ρ(← Q)
← Qb := OPTIMAL REFINEMENT(candidates,E, T )
conj := Qb − Q
Pnew := P + conj
if STOP CRIT (conj, Pnew , E)
then

K := PREDICT(E, P )
return leaf(K)

else
if SPLIT COND (conj)
then

El := {e ∈ E|←Qb succeeds in e ∧ Background}
Er := {e ∈ E|←Qb fails in e ∧ Background}
Tl :=REMOVE LINEAR EFFECT (El, T, conj)
Tr :=REMOVE LINEAR EFFECT (Er, T, conj)
left := GROW TREE (El, Tl, Qb, Pnew)
right := GROW TREE (Er, Tr, Q,Pnew)
return split node(conj, left, right)

else
Tch :=REMOVE LINEAR EFFECT (E, T, conj)
child := GROW TREE (E, Tch, Qb, Pnew)
return regression node(conj, child)

procedure OPTIMAL REFINEMENT (Qs: queries, E: examples, T :targets):
for all Q ∈ Qs

EXECUTE(Q,E)
if (NOMINAL (Q))

then Heur(Q) := |El|
|E| SD(El) + |Er|

|E| SD(Er)

else Heur(Q) := |El|
|E| RSD(El, Q) + |Er |

|E| RSD(Er, Q)

Qb := arg minQHeur(Q)
if (NOMINAL (Qb))
then return Qb

else
Heurp(Qb) := RSD(E, Qb)
if (Heurp(Qb) ≤ Heur(Qb))
then return EXTRACT NUMERIC ATTR(Qb)
else return Qb
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Comparison with Mr-Smoti. By introducing regression nodes into our sys-
tem, the resemblance with Mr-Smoti increases. In the remainder of this section,
we discuss the most important differences between both systems.

Complexity of finding the best split node. In ReMauve the evaluation of a nu-
meric split requires the calculation of two simple linear regression functions: one
for each child node. In Mr-Smoti a similar, but more complex heuristic func-
tion is used: in each child node simple linear regression models are constructed
with each numeric attribute used as the predictive attribute. The best regression
is chosen independently for the two children and the heuristic value associated
with the split under consideration is the weighted average of the RSD of the best
regression lines of left and right child. Finding the best numeric split amongst
all predictors therefore has complexity O(m) for ReMauve and O(m2) for Mr-

Smoti, with m the number of numeric predictors. In the propositional setting
of both algorithms the more complex heuristic of Smoti did not outperform
Mauve on predictive performance [6].

Complexity of introducing regression nodes. In our system, introducing a re-
gression node requires almost no computation: after the best split condition is
obtained and is found to be numeric, the global linear effect of the attribute in
the split is tested. This requires only one extra RSD to be computed. In Mr-

Smoti the best regression node is searched for independently of the best split
node and requires a lookahead step, in the sense that the best split is searched
after the new attribute is included in the multiple model. This renders the whole
node selection procedure for Mr-Smoti cubic in the number of predictors.

Removing the linear effect of attributes. In Mr-Smoti regression nodes were
introduced in order to incrementally build the multiple regression models in
the leaves of the model tree. Therefore, next to updating the target values, the
linear effect of an introduced numeric attribute also has to be removed from all
other numeric predictors that may be used later in the tree. In ReMauve it
is not possible to update all numeric attributes in the dataset, because these
attributes are generated on-the-fly at each node. It would not be feasible to do
this updating during refinement generation (requiring another RSD calculation
for each refinement and each numeric attribute on the path from the root to
the node) given the huge search spaces that may be dealt with by introducing
complex aggregates. Therefore, in ReMauve, the final multiple regression model
in the leaves is built from scratch.

Overall complexity. The observations above lead to the following overall com-
plexity results. For Mr-Smoti, the inner node refinement procedure has com-
plexity O(m3), with m the number of numeric attributes. In a leaf, however, the
predictive regression model is obtained by composing the models on the path
from the root to the leaf, and thus, can be performed in constant time. A model
tree with k inner nodes contains at most k+1 leaves, thus the overall complexity
for building a model tree with Mr-Smoti is k ×O(m3) + (k + 1)×O(1).
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For ReMauve the node refinement process has complexity O(m). Construct-
ing a leaf requires O(p3), where p is the number of numeric attributes on the
path from the root to the leaf. This results in an overall complexity of k×O(m)+
(k + 1) × O(p3). Given the fact that p << m, especially when using complex
aggregates, the ReMauve system is more efficient for the applications we target.

Representational formalism. A last important difference between both systems
concerns their representational formalism. Whereas ReMauve is an ILP sys-
tem, Mr-Smoti operates on a relational database, using selection graphs [27]
to represent nodes of the model tree.

4 Experiments

In this experiments section, we address two questions:

1. How do model trees that predict functions with complex aggregates perform
compared to model trees that do not predict aggregates?

2. How does ReMauve compare to other systems as Tilde-RT or Mr-Smoti?

We have performed experiments on two biological datasets: Mutagenesis [28]
and MassSpectrogram [29]. Given the scarceness of publicly available relational
regression datasets with numeric attributes, we also constructed two synthetic
datasets.

In Mutagenesis, the task is to predict the mutagenicity level of 230 nitro-
aromatic compounds. Of these 230 compounds, 188 are known to be well
predicted by linear regression methods. In our experiments we use both the
regression friendly subset and the full dataset. Several descriptions of the com-
pounds have been proposed [30]. We use the backgrounds B2 (atoms and bonds,
including partial charge of atoms) and B3 (B2 extended with the Lumo and LogP
properties). In the MassSpectrogram dataset, the task is to predict the weight
of a molecule based on its mass spectrogram. A mass spectrogram is a graph
of the mass-to-charge ratio of the different fragments versus the frequency. The
dataset contains 873 molecules.

For the synthetic datasets the true target function is a model tree that contains
aggregates. They both contain 1000 examples. The first dataset (Artificial1) con-
tains two predictive attributes: x(X) (determinate) and y(Y ) (non-determinate).
Each example contains 8 y literals, for which the value can be aggregated. All
numeric values are random values, uniformly distributed between 0 and 10. The
target function for this dataset is shown in Fig. 1(a). It requires two regression
nodes in ReMauve. The second dataset (Artificial2) includes three predictive
attributes: x(X), y(C, Y ), and z(Z), of which y is non-determinate and has 15
values for each example. Again the numeric values for x, y, and z are uniformly
distributed between 0 and 10. The C variable in the y literal is a boolean value.
The target function is shown in Fig. 1(b). This dataset also requires two re-
gression nodes, one of which involves a complex aggregate using the boolean
condition. For the two datasets, we added Gaussian distributed noise to the
target value.
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As explained in Sect. 3, ReMauve is able to learn complex aggregate con-
ditions. In order to address the first question defined above and to allow for a
comparison with Mr-Smoti, we also performed the experiments without the
ability to learn aggregates.

x(X), X < 5 ?
+yes: max{Y |y(Y )} < 9 ?
| +yes: 4x(X) + 6avg{Y |y(Y )}
| +no: 3max{Y |y(Y )} + 1
+no: avg{Y |y(Y )} < 4 ?
| +yes: 3x(X) + 4
| +no: x(X)−2max{Y |y(Y )}+3avg{Y |y(Y )}

(a)

x(X), X < 6 ?
+yes: min{Y |y( , Y )} < 1 ?
| +yes: 2x(X) + 3max{Y |y(true, Y ) + 3}
| +no: 2x(X) + 5min{Y |y( , Y )}
+no: −2x(X) + z(Z) ?

(b)

Fig. 1. Target function for two synthetic datasets. (a) The Artificial1 dataset. (b) The
Artificial2 dataset.

The results are presented in Tables 3 and 4. Predictive performance is obtained
by taking the average MSE (mean squared error) of five tenfold crossvalidations.
Model size is measured as the number of leaves and the number of regression
nodes (the latter only for ReMauve and Mr-Smoti). Induction times are diffi-
cult to compare, since Tilde-RT and Remauve were run on a different platform
than Mr-Smoti.

The first question is dealt with by comparing ReMauve’s predictive per-
formance when learning complex aggregates to when not learning them. For
MassSpectrogram and the artificial datasets, a clear predictive performance im-
provement is obtained when complex aggregates are considered. Moreover, the
improvement holds for both ReMauve and Tilde-RT. Part of the resulting
tree for MassSpectrogram is shown in Fig. 2. For Mutagenesis, the result is less
obvious. Both for ReMauve and Tilde-RT the error tends to increase when
learning aggregates. Whereas in the classification setting complex aggregates
turned out to be beneficial for this task, to our knowledge, complex aggregates
have not been used before to predict the numeric mutagenicity level of molecules,
thus we can not compare this result to other results in the literature.

The second question is answered by comparing ReMauve to Tilde-RT and
Mr-Smoti w.r.t. predictive performance and model complexity. When compar-
ing ReMauve to Tilde-RT, we see that in the aggregate settings (i.e., in the
context of many numeric attributes), an improvement in both predictive accu-
racy and model complexity is obtained. Also, for the artificial datasets, where
the target concept involves linear regressions, a clear improvement is obtained,
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max{Ratio|ms(Mol, Ratio, F req)} < 199.0 ?
+yes: avg{Ratio|ms(Mol, Ratio, F req),Ratio < 83.0} < 51.0 ?
| +yes: max{Ratio|ms(Mol, Ratio, F req), F req < 2.3} < 119.0 ?
| | +yes: 0.84 ∗ max{Ratio|ms(Mol, Ratio, F req)}+
| | 0.85 ∗ avg{Ratio|ms(Mol, Ratio, F req),Ratio < 83.0}+
| | 0.06 ∗ max{Ratio|ms(Mol, Ratio, F req), F req < 2.3} − 19.08

...
+no: avg{Freq|ms(Mol, Ratio, F req)} < 8.0 ?

+yes: avg{Freq|ms(Mol, Ratio, F req),Ratio < 60.0}
| +--: 0.95 ∗ max{Ratio|ms(Mol, Ratio, F req)}+
| −13.30 ∗ avg{Freq|ms(Mol, Ratio, F req)}+
| 5.50 ∗ avg{Freq|ms(Mol, Ratio, F req), Ratio < 60.0} + 97.91
...

Fig. 2. Resulting tree for the MassSpectrogram dataset

Table 3. Comparing ReMauve’s predictive performance and tree size to Tilde-RT

and Mr-Smoti for the Mutagenesis dataset

Mutagenesis
Regression friendly subset Full dataset
B2 B3 B3 B2 B3 B3

no agg. no agg. agg. no agg. no agg. agg.

Avg. MSE
ReMauve 1.98 (0.1) 1.45 (0.5) 1.43 (0.4) 4.01 (0.2) 3.50 (0.6) 3.70 (0.6)
Tilde-RT 1.96 (0.1) 1.57 (0.1) 1.85 (0.2) 3.67 (0.2) 3.44 (0.2) 3.94 (0.4)
Mr-Smoti 3.02 (0.1) 1.14 (0.2) - 32.68 (28.1) 3.32 (0.2) -

Regr. nodes
ReMauve 1 2 8 2 1 6
Mr-Smoti 8 5 - 8 15 -

Leaves
ReMauve 7 3 5 11 8 5
Tilde-RT 14 16 28 11 23 28
Mr-Smoti 10 7 - 9 15 -

both with and without aggregates. In the other settings, while generally re-
sulting in smaller models, the comparison in predictive performance is less clear.
When comparing ReMauve to Mr-Smoti, a first observation is that ReMauve

tends to build shorter trees. Only on the Artificial2 dataset is the model built
by Mr-Smoti simpler. Regarding predictive performance, we see clear winners
for ReMauve on the artificial datasets. On the MassSpectrogram dataset, Mr-

Smoti outperforms ReMauve. However, when learning complex aggregates,
ReMauve reduces Mr-Smoti’s MSE with a factor 3.6. On the Mutagenesis
datasets, the results are divided: two winners for each system. (The high MSE
of 32.68 for Mr-Smoti on the full dataset with background B2 is due to two
particular test examples. Removing them from the test sets yields an average
MSE of 4.79 (0.12).)
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Table 4. Comparing ReMauve’s predictive performance and tree size to Tilde-RT

and Mr-Smoti for the MassSpectrogram and artificial datasets

MassSpectrogram Artificial1 Artificial2
no agg. agg. no agg. agg. no agg. agg.

Avg. MSE
ReMauve 8144 (65) 1289 (101) 30.84 (0.2) 1.08 (0.0) 1.64 (0.1) 0.97 (0.0)
Tilde-RT 8132 (24) 2401 (146) 35.18 (0.3) 3.94 (0.1) 2.55 (0.0) 2.06 (0.1)
Mr-Smoti 4583 (221) - 60.58 (2.0) - 12.08 (0.7) -

Regr. nodes
ReMauve 1 9 1 2 2 3
Mr-Smoti 6 - 10 - 0 -

Leaves
ReMauve 3 10 5 4 3 3
Tilde-RT 3 222 30 58 44 64
Mr-Smoti 8 - 14 - 3 -

5 Conclusion

We have presented a relational model tree learner, ReMauve, that is able to
construct regression functions with complex aggregates in the leaves. These com-
plex aggregates occur in the leaves if they have shown a linear relation with the
target during the tree building process. The system uses a heuristic function
that takes into account the fact that linear models are built in the leaves, while
having a time complexity linear in the number of numeric attributes. This differs
only a constant factor with the most efficient heuristics, which have been shown
to produce sub-optimal model trees. The efficiency is necessary when consider-
ing complex aggregates, since the number of numeric attributes becomes very
high.

Experimental results demonstrate that, if many numeric attributes occur
in the dataset (e.g., in the context of learning aggregates), our system out-
performs normal regression tree learners. When comparing to a model tree
learner that uses a more complex heuristic function, the comparison in pre-
dictive performance is less obvious, while our system in general produces shorter
trees.
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Abstract. Contemporary product design based on 3D CAD tools aims
at improved efficiency using integrated engineering environments with
access to databases of existing designs, associated documents and en-
terprise resource planning. The ultimate goal of this work is to achieve
design process improvements by applying state-of-the-art ILP systems
for relational data mining of past designs, utilizing commonly agreed de-
sign ontologies as background knowledge. This paper demonstrates the
utility of relational data mining for virtual engineering of product designs
through the detection of frequent design patterns, enabled by the pro-
posed baseline integration of hierarchical background knowledge (a CAD
ontology) using sorted refinements.

1 Introduction

Despite considerable successes of ILP in various knowledge discovery problems
such as in bioinformatics [7], industrial applications of ILP have been relatively
rare. Although the usefulness of ILP has been demonstrated in areas such as finite
element mesh design [4], we are not aware of industrial software employing ILP
technologies in regular real-life practice. Engineering, as a knowledge-intensive
activity, has great potential for ILP. Consider product engineering which involves
diverse knowledge types including CAD structures, technical specifications, and
standards. In addition, knowledge about the electrical, mechanical, thermody-
namic and chemical behavior may be made available, supported by means of
empirical data and simulation models. The abundance of data and knowledge
motivates the application of ILP to solving numerous relational data mining
tasks. For example, discovering design substructures frequently occurring in a
corporate CAD repository would allow to establish their easily invocable tem-
plates, with a potential of eliminating repetitive designing work.

This paper reports on the approach developed in the SEVENPRO1 project
which aims at developing a semantic virtual engineering environment for product
1 SEVENPRO, Semantic Virtual Engineering Environment for Product Design, is the

project IST-027473 (2006-2008) funded under the 6th Framework Programme of the
European Commission. The authors acknowledge the support by this project.

S. Muggleton, R. Otero, and A. Tamaddoni-Nezhad (Eds.): ILP 2006, LNAI 4455, pp. 439–453, 2007.
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design, extending traditional CAD tools with semantic web, virtual reality and
relational data mining (RDM) technologies. In one of the tasks the aim is to
improve the effectiveness of the search for typical patterns stored in design com-
mand chains2—conducted for a product of a certain class—thus making explicit
the tacit knowledge of an experienced engineer. Other objectives like relational
classification, clustering or outlier detection are also motivated in this domain,
including rather unorthodox tasks such as learning to match between a formal-
ized product requirement set with an appropriate product design, where both
the requirements and designs are represented in relational database formalisms.

The information available in CAD files, associated documents, enterprise re-
source planning (ERP) and other data sources can be formalized and combined
by means of a semantically enriched layer of meta-information (i.e., semantic
annotation) based on ontologies. Semantic annotations of CAD designs can be
generated automatically from commands histories available via an API of a CAD
tool, based on a CAD ontology. These annotations, including the ontology of
CAD items, typically encoded in the RDF format, can be automatically trans-
formed to Prolog files containing an ontology of CAD items, axioms and data.

There are three main challenges for ILP due to the use of ontologies in the
background knowledge, corresponding to hierarchies of concepts, hierarchies of
relations and representation conversion (between Prolog and other knowledge
representation languages). SubclassOf is a core ontological relation corresponding
to taxonomy on terms. Therefore an efficient handling of term taxonomies has to
be integrated into the employed RDM systems. The RDF formalism also allows
to define hierarchies on relations by means of the subpropertyOf relation. To
exploit the subproperty relation directly, RDM systems would have to deal with
taxonomies of predicates.

Motivated by the virtual engineering of product designs application domain,
this work focuses both on what ILP can offer to SEVENPRO problem solv-
ing, but also on foundational ILP research challenges motivated by SEVEN-
PRO engineering problems. One of these ILP challenges is the effective use of
term/predicate taxonomies which have been, to the best of our knowledge, not
commonly addressed in ILP. This work therefore focuses on the technique of
taxonomy-exploiting search space structuring, which underlies most other spe-
cific SEVENPRO RDM tasks such as frequent pattern mining, classification,
feature construction, and design clustering.

This paper is organized as follows. Section 2 provides background for our work
by introducing the application domain. Section 3 outlines the role of RDM in
the SEVENPRO project and then deals more specifically with RDM of CAD
data. In section 4 we describe integration of taxonomies into ILP techniques.
Section 5 describes experiments that we conducted and their results. The last
section contains conclusions and future work.

2 A design is obtained by successive applications of CAD commands, such as extru-
sion, rotation, etc., which are mutually parametrically related. Various command
sequences may lead to the same design, while differing greatly in quality respects,
such as complexity, reusability, etc.
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2 Background

This section first introduces the application domain, followed by the state-of-
the-art in ILP.

2.1 Semantic Virtual Engineering for Product Design Environments

Engineering is one of the most knowledge-intensive activities that exist. More
specifically, product engineering has been a key to the development of a strong
and specialized manufacturing industry in Europe, organized in RTD depart-
ments and technical offices. Product engineering deals with very specific knowl-
edge types, like product structures, CAD designs, technical specifications,
standards, and homologations. Moreover, specific electrical, mechanical, thermo-
dynamic and chemical knowledge may include empirical data, simulation models
and Computer-aided engineering analysis (CAE) tools that serve to optimise rel-
evant features of the design. The result is rich and complex knowledge stored
in many heterogeneous formats, of which probably CAD, documentation and
ERP/database are the most frequently found, and which constitute the focus
of the SEVENPRO project. The project addresses the most important prob-
lem encountered by engineering teams: the effective reuse of knowledge and past
designs.

Most engineering teams currently have to access heterogeneous information
sources from different tools which, in most cases, do not interoperate. The devel-
opment of a new product, or a product order with high level of customization,
requires a new engineering approach. During the development process, engineer-
ing staff works out new product item designs by means of CAD tools. CAD
designs contain vast amounts of implicit knowledge about the way experienced
engineers design very specialized parts. Efficient reuse of knowledge depends on
appropriate organization of information and the capability of retrieving it for
later use. Engineering teams still have to spend lots of time trying to find exist-
ing designs from a vast CAD repository; in many occasions, they design again
and again items very similar to others already existing. Moreover, the differ-
ent types of knowledge described are supported by different systems, which are
used separately and have no communication with each other, like CAD tools,
ERP systems, documents and spreadsheets, etc. This situation is illustrated in
Figure 1(left).

To efficiently retrieve information, it is necessary to be able to carry out com-
plex searches, combining geometrical, technical and managerial aspects. This
would allow the engineer, for example, to query about “parts of type clamp
[itemFamily], with more than 6 holes [Geometry], set in order later than Novem-
ber/2004 [Management], compliant with ISO-23013 [Documentation]”. This is
not possible with current information systems, unless an expensive and complex
Product Lifecycle Management (PLM) system is set up, whose maintenance in
terms of information updates is burdensome for every company and simply un-
affordable in terms of cost for SMEs. The only feasible approach to this is by us-
ing semantic-knowledge technologies and a well automated semantic-annotation
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Fig. 1. Engineering heterogeneous information sources before and after SEVENPRO

system from the different information sources, able to extract from them all the
knowledge that is useful for the engineering activity. In order to achieve this,
an integrated architecture is required, able to extract and maintain a layer of
semantic annotations from the different information sources targeted, namely
ERP, CAD and Document repositories. As shown in Figure 1(right), a novel se-
mantic virtual engineering product design scenario aims at a better integration
and reuse of design knowledge.

2.2 ILP Background: Relational Data Mining by RSD

The RSD relational data mining system [16] enables the discovery of interesting
relational subgroups from data (facts) and relational background knowledge. In
the engineering design context, an example of a relational subgroup description
is e.g.:“a structure containing two co-centric cylinders” (here two substructures
of a structure with the mutual relation of co-centricity). A subgroup is then a
set of all designs complying with the above description. An interesting subgroup
is one that is sufficiently large and in which the distribution of values of a chosen
attribute of interest substantially differs from the distribution in the entire data
set. For example, the attribute of interest may be the functional category of
the design. Similar to Aleph [12], RSD is controlled through command line and
accepts data and background knowledge in the Prolog syntax. A distinguishing
point of RSD is that it tackles the relational mining task by an (approximate)
conversion into a non-relational (propositional) data mining task by constructing
a set of truth-valued relational features. The technique (known as propositional-
ization) implemented in RSD is not limited to the task of subgroup discovery and
can be used to transform relational design descriptions into forms that can be
used as input to other data mining techniques (e.g. those in WEKA [15]), whose
outputs can then be back-converted and interpreted as relational non-recursive
patterns/models.

The task addressed in this work is discovery of interesting design patterns
describing detected groups of frequent design sequences. Such discovery is made
from stored designs and background knowledge in the form of a CAD ontology.

The patterns are also converted to Boolean features using method of proposi-
tionalization described in [16] and used for classification by propositional methods.
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The usefulness of ILP-generated patterns as attributes for propositional meth-
ods has been described e.g. in [14], where ILP-generated attributes were used
in addition to expert attributes for regression. The background knowledge used
in this work does not contain any hierarchical information. Since in our work
we are using only function-free Horn clauses, the generating relational patterns
in our work is similar to discovery of frequent patterns in DATALOG described
in [3]. This work deals with hierarchical background knowledge by means of
is_a predicate, providing it in form of facts e.g. is_a(1001,BSC_disturbance),
is_a(BSC_disturbance,BSC_alarm). The hierarchy does not distinguish be-
tween “subclass” and “member of” relations. The level-wise algorithm for fre-
quent pattern discovery is used. Expressing class hierarchy using is_a predicate
also appears in [2]. Ceci and Appice compare classification using multi-level asso-
ciation with propositional classification using association rules having only class
label in the head converted into Boolean attributes. We are adopting a simi-
lar approach to propositional classification, however we are extending the used
hierarchical background knowledge to hierarchy on predicates.

3 Relational Data Mining Applied to the Discovery of
Product Design Patterns

This section first outlines the role of RDM in the SEVENPRO project. Then a
more detailed description of data from CAD designs is provided.

3.1 Overall RDM Role in the SEVENPRO Project

The discovery of patterns from engineering knowledge repositories is expected
to be an important facility for reusing engineering knowledge. The amount of
data and its availability through the use of several independent tools has al-
ways been an obstacle for such reuse. Coupling a unified view of the available
knowledge through commonly agreed ontologies with the capabilities of mining
the information gathered in various engineering resources will broaden the range
of actually reusable engineering knowledge. In particular, it is foreseen that the
sequences of CAD design operations (design features) can be exploited to obtain
from them abstract design patterns. These patterns (after human revision) can
be reused as corporate design standards or recommendations

– to support the work of engineers (reusability),
– to check pattern compliance of new designs (quality checking), and
– to teach novel engineers on how to design specific parts (training).

Engineering designs capturing implicit expert knowledge have a relational
nature: they cannot be efficiently described by attribute tuples. Rather, flexible-
size structural descriptions are needed, specifying various numbers of primi-
tive objects as well as relations between them. To discover and explicitly define
knowledge from such data by means of relational patterns, RDM algorithms are
needed.

The status of the current SEVENPRO developments is presented in Sections
4 and 5 of this paper.
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Fig. 2. Example of a CAD design including commands history

3.2 CAD Data Used for Relational Data Mining

The SEVENPRO ontologies and the corresponding annotations cover a large
spectrum of engineering concepts (items, orders, norms, problems, versioning,
among many others). As mentioned, this allows for complex queries across the
available knowledge. An important facet of this knowledge is the CAD design
information. Engineering departments generate a large amount of CAD files.
Such files can be 3D part-definition files, 3D assembly definition files or 2D
drafting files. In addition, relevant information ranges from textual data (like
block, operation or part names) and generic document structure (like assembly
structure), to detailed design information in the case of 3D parts. In the later
case, the shape of a 3D part is the result of sequence of operations specified
by the designer. This sequence of design operations (design features) is where
most of the designer’s knowledge resides, as it is a reflection of the designer’s
experience.

Figure 2 represents a simple mechanical part, a two bolt flange. Notice the
command history (at the left-hand side of the figure) leading to the particular
virtually designed object. In command histories the basic operations are “creat-
ing” matter (e.g., a pad, a stiffener) and “removing” matter (e.g., a chamfer, an
edgeFillet).

This design history conveys the higher level information on how the object was
designed as well as high level dimensional information, as the commands have
parameters associated to them (like the height of an extrusion or the radius of
a fillet). This information would be more difficult to determine using only the
final shape of the part. Having it associated to the operation not only makes it
easily accessible but also keeps its real meaning. The design history, presented
at the left-hand side of Figure 2, is depicted in the annotation layer as a design
sequence in terms of ontology classes and instances, as shown in Figure 3.
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Fig. 3. Part of a semantic annotation of the design shown in Figure 2

This kind of highly relational data exists for all the annotated files, and is
the input to a RDM algorithm. The generated instance schema is simplified
with respect to the internal CAD representation. For example, if a sketch does
not belong to any predefined category, it is identified as a complexSketch and
it is not further elaborated. The schema also contains some properties derived
from other properties, e.g. property hasDepth of extrude is derived from the two
limits. In SEVENPRO, this representation has been converted into Prolog facts,
more suitable as input for the RDM algorithms. An example of Prolog facts
describing part of CAD design is presented below.

hasCADEntity(’eItemT_BA1341’,part_183260395_10554).
typeOf(’eItemT_BA1341’, eItemT).
typeOf(part_183260395_10554, cADPart).
hasBody(part_183260395_10554,body_183260395_10555).
typeOf(body_183260395_10555, body).
hasFeature(body_183260395_10555,extrude_183260395_10556).
typeOf(extrude_183260395_10556, extrude).
hasSketch(extrude_183260395_10556,complexSketch_183260395_10557).
typeOf(complexSketch_183260395_10557, complexSketch).
hasGeomElem(complexSketch_183260395_10557,circle_183260395_10558).
typeOf(circle_183260395_10558, circle).
hasDepth(extrude_183260395_10556,0).

4 ILP Advances: Integration of Taxonomies

The ontological background knowledge currently available in the described CAD
domain is represented in the RDF formalism [11]. The ontology can be repre-
sented by an acyclic directed graph (DAG). Concepts are defined only by means
of declaring class and its place in the class hierarchy. No set operators or re-
strictions commonly used in OWL are present in the background knowledge and
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dataset. Only the domain and range are defined for the properties and a hier-
archy on properties is induced by means of the subpropertyOf relation. The
definition of rdfs:subPropertyOf relation in [11] originally states: If a property
P is a subproperty of property P’, then all pairs of resources which are related
by P are also related by P’. For our purposes the definition of subPropertyOf
relation is restricted to cases where domain and range of P and P’ are defined
by some class or set of classes. Then it must hold that domain of P is equivalent
to or subclass of the domain of P’ and the same holds for range.

Therefore we have to deal essentially with taxonomies on terms and predicates.
Our baseline approach for integration of these taxonomies into RDM is based
on the refinement operator proposed in [6].

4.1 Sorted Downward Refinement

The background knowledge built into this refinement is based on sorted logic,
which encodes the taxonomies. Sorted logic contains in addition to predicate
and function symbols also a disjoint set of sort symbols. A sort symbol denotes
a subset of the domain called a sort [6]. A sorted variable is a pair, x : τ , where
x is a variable name and τ is a sort symbol. Semantically, a sorted variable
ranges over only the subset of the domain denoted by its sort symbol. The
semantics of universally-quantified sorted sentences can be defined in terms of
their equivalence to ordinary sentences: ∀x : τφ is logically equivalent to ∀x :
¬τ(x) ∨ φ

′
where φ

′
is the result of substituting x for all free occurrences of

x : τ ∈ φ.
The background knowledge that is to be built into the instantiation, subsump-

tion and refinement of sorted clauses is known as a sort theory. A sort theory
is a finite set of sentences that express relationships among the sorts and the
sortal behavior of the functions. Sentences of the sort theory are constructed like
ordinary sentences of first-order predicate calculus except that they contain no
ordinary predicate symbols; in their place are sort symbols acting as monadic
predicate symbols. In [6] the form of the sort theory is restricted to two types of
sentences: function sentences and subsort sentences.
Function sentence

∀x1, . . . , xnτ1(x1) ∧ . . . ∧ τn(xn)→ τ(f(x1, . . . , xn))

Subsort sentence

∀xτ1(x) → τ2(x).

Graph of the sort theory has to be acyclic and singly rooted. In our task we
are not dealing with functions, therefore the only type of sort theory is restricted
to subsort sentences. As was stated above the background knowledge is acyclic
and since no multiple inheritance is used, graph of the background knowledge
is a DAG, graphs for the individual sorts are trees. For the sort theory special
substitution is defined [6]:
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Definition 1. Sorted substitution θ is a Σ-substitution if for every variable
x : τ , it holds that Σ |= ∀̄τ(t) where t is (x : τ)θ.

In [6] it was proved there that the sorted downward refinement is finite for finite
set of predicate symbols and that it is correct and complete.

4.2 Extending θ-Subsumption with Σ-Substitution

We have extended the traditional θ-subsumption with Σ-substitution obtaining
a refinement operator with three substitution rules:

1. specialization through changing the type of a variable to its direct subclass
(based on Σ-substitution),

2. specialization through adding a literal (traditional θ-substitution),
3. specialization through replacing predicate P by a predicate P’, where it holds

subPropertyOf(P’,P).

In addition to the two new specialization rules, specialization through adding
a literal was extended, so that the types of input variables of a literal to be added
can be supertypes of some already used variables. This was done to accommo-
date for situation similar to the following example: Conjunction created so far
is hasCADEntity(X1:cADFileRevision,X2:cADPart),hasBody(X2:cADPart,
X3:body),hasFeature(X3:body,X4:extrude),hasDepth(X4:extrude,
X5:length), the literal to be added is defined by hasValue(+literalValue,
-float) (i.e. by predicate hasValue with input argument of type literalValue
and output argument of type float). In the background knowledge it is stated
that length is a subclass of literalValue. Therefore the predicate hasValue
can be added to the conjunction, creating new conjunction:
hasCADEntity(X1:cADFileRevision,X2:cADPart),hasBody(X2:cADPart,
X3:body),hasFeature(X3:body,X4:extrude),hasDepth(X4:extrude,
X5:length),hasValue(X5:length,X6:float). We have not included substitu-
tion of variables by constants so far, since in data mining from CAD designs we
are currently focusing on the structure of similar designs, not on numeric values
of parameters.

4.3 Pattern Discovery

The pattern discovery task using the sorted refinement operator is approached
through constructing first-order features. An overview of the system is shown in
Figure 4. The ILP system generates features with user-defined maximal length
and minimal support. The generated features are connected subgraphs of gen-
eralizations of the graphs describing the individual examples. Since the graphs
describing the examples are not trees and there are relations connecting variables
at the same variable depth, reuse of variables within the features is necessary, i.e.
one variable can be used either as input or output variable of several predicates
within one feature. An example of relation connecting variables at the same
variable depth is appliesTo(fillet, cADFeature) in the following example
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Fig. 4. An overview of the RDM system

hasCADEntity(X1:cADFileRevision,X2:cADPart),hasBody(X2:cADPart,X3:
body), hasFeature(X3:body,X4:cADFeature), next(X3:body,X5:fillet),
appliesTo(X5:fillet,X4:cADFeature).

Depth-first search is used to generate the features. To prevent generation of
irrelevant features, the coverage of each feature is computed immediately after
the feature is generated. Features with coverage lower than the minimal required
support are pruned and not refined further. To prevent generating features that
are permutations of features already generated, an explicit order on predicates
and concept types is defined and enforced in each feature. Ordering of predicates
is checked for the set of literals with the same variable depth of input variables.
Moreover, in case of multiple use of the same predicate with same input variables
and output variables of the same type, subtree rooted at each occurrence of the
predicate has to be smaller than subtree rooted at previous occurrences of this
predicate. Total order on the subtrees is induced by order defined on predicates.
Therefore the search is complete even with ordering.

An example of a discovered feature, which was the single most important
feature for description of the class itemFamilyLiner, can be seen below. It
contains variables of types at different levels of granularity e.g. cADFeature is 2
levels higher in the hierarchy of features than fillet.
f(X1:eItemT):- hasCADEntity(X1:eItemT,X2:cADPart), hasBody(X2:
cADPart,X3:body), hasFeature(X3:body,X4:pocket), hasSketch(X4:
pocket,X5:complexSketch), hasGeomElement(X5:complexSketch,X6:
circle), next(X4:pocket,X7:fillet), next(X7:fillet,X8:cADFeature)

During the feature generation, a table of feature subsumption pointing to
all ancestors of the feature is maintained. This is similar to the approach em-
ployed in SPADA [1]. This subsumption table is exploited for pruning of features
for propositionalization. The subsumption is also exploited in propositional pat-
tern search, which prunes any conjunctions of a subsumer with its subsumee and
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Fig. 5. Examples of discovered features

specializes a conjunction not only by extending it, but also by replacing an
included feature with its subsumee.

4.4 Feature Visualization

To improve RDM usability both for users and for developers, graphical visualiza-
tion of features is useful. A tool based on the JGraph library has been developed.
As the input data schema for RDM contains only unary and binary predicates,
we can restrict our attention to oriented directed acyclic graphs (DAGs). Nodes
in such a DAG represent undistinguished variables labeled by sort atoms, while
edges represent binary predicate atoms.

In Figure 5 an example of discovered patterns is shown. The two patterns in
the figure simultaneously cover 44 of 62 instances classified as itemFamilyLiner,
while they also cover 3 other (non-itemFamilyLiner) instances. Accordingly, the
class itemFamilyLiner can be well described as a set of instances having as a
starting feature a two circle extrusion, while having also another feature – a
circled pocket followed by a fillet and another feature.

5 Experimental Results

Experiments were performed on a dataset containing 160 examples of CAD de-
sign drawings provided by a metal casting company that participates in the
project: Fundiciones del Estanda. Two main types of experiments were run:

– searching for relational patterns present in all examples of a given class, to
compare efficiency of the sorted refinement enriched RDM to a baseline ILP
system, and

– classification based on constructing propositional features to evaluate the
predictive accuracy of the propositionalisation approach to classification.
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Fig. 6. Comparison of sorted refinement with and without using taxonomy on predi-
cates. Left: Number of nodes explored Right: Time taken.

5.1 Comparison of Sorted Refinement with Aleph

We conducted experiments to compare the efficiency of RDM including sorted
refinement (SR) on one hand and a standard ILP system on the other hand.
The baseline ILP system chosen for comparison was Aleph. The specific goal of
the experiment was to determine the volumes of search space traversed by the
respective systems in order to find patterns covering all of the provided positive
examples.

The majority class of examples is considered as positive. For the sake of this
experiment, no negative examples are needed. There were 57 examples, where
each example contained a description of one CAD design drawing. Around 100
predicates were used to describe each example.

The tests were performed for pattern length from 1 to 8. For pattern length
greater than 7, pattern generation was no longer tractable for Aleph. In the first
set of experiments only term subsumption was used in our system. It can be seen
that the number of expanded nodes is decreased very significantly. In the second
set of experiments, predicate subsumption was used in our system as well. Results
of these experiments can be seen in Figures 6 and 7. Figure 6 shows results of
using sorted refinement with and without predicate subsumption. Figure 7 shows
results of both our approaches compared to Aleph. The time taken for evaluation
roughly doubles w.r.t. experiments using term subsumption only. The number
of explored nodes decreases, however the decrease is not very significant. This
is due to the fact that the subproperty relation hierarchy that was used has
only two levels and includes around 10 predicates. Our system can be used for
pattern sizes, which are intractable in Aleph. This is important, because it has
been discovered that patterns with length less than 7 do not provide information
sufficient for classification.

5.2 Classification Based on Propositional Features

For the data set containing 160 design drawings their classification was provided.
Examples were classified into 4 proper classes describing families of designs and
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Fig. 7. Comparison of sorted refinement and Aleph. Left: Nodes explored Right: Time
taken.

57 examples that did not belong to any of the 4 classes were classified as ’other’.
By consultation with the users it was found out that the first feature used is
important and also relative order of the features is important. Therefore proper-
ties describing the order of CAD features were added to background knowledge
and to annotations e.g. next(+cADFeature,-cADFeature), sequenceStart and
firstFeature(+body,-cADFeature). The following relations were also added to
the background knowledge:
subpropertyOf(firstFeature,hasFeature), subpropertyOf(hasFeature,
sequenceStart). Special treatment of relations that are subproperties of next
and sequenceStart was implemented. Subproperties of sequenceStart can oc-
cur only once in a pattern and for subproperties of next order on the level of
arguments is not checked.

Our system was used to generate a set of features of length 7. The feature
set was then pruned by excluding features covering all examples. Also in case
a feature covered the same examples as some of its children, the feature was
excluded. More general features are pruned rather than more specific ones, since
concepts that are leaves of the class hierarchy are mapped to specific design
operations available in CAD systems and therefore are more interesting for the
user. Propositional algorithm J48 implemented in WEKA [15] was then used for
classification using generated features as attributes. For testing 10 fold cross-
validation was used. Results of the classification are summarized in Table 1.

Table 1. Results of classification using the J48 algorithm

Class TP Rate FP Rate Precision Recall F-Measure ROC Area

itemFamilyTT 0.826 0.036 0.792 0.826 0.809 0.9

itemFamilyLiner 0.895 0.068 0.879 0.895 0.887 0.927

itemFamilyStdPlate 0.5 0.02 0.571 0.5 0.533 0.834

itemFamilySlottedPlate 0.8 0.02 0.727 0.8 0.762 0.883

other 0.855 0.071 0.883 0.855 0.869 0.897
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The prevailing error type is that some items of class itemFamilyStdPlate
were incorrectly classified as itemFamilySlottedPlate. These two classes are
both subclasses of class itemFamilyPlate and they are more similar to each
other than any other pair of classes. More detailed information or longer features
would be necessary to distinguish between these two classes more accurately.
Other errors were mostly confusions between one of the proper classes and class
’other’.

6 Conclusions and Further Work

In this paper we have described semantic virtual engineering for product design
in engineering environments, which integrates information from heterogeneous
sources by means of a semantic layer, and identified the role of relational data
mining in this application. As a case study, semantic annotation and RDM on
CAD designs was chosen, since CAD designs are challenging from the ILP point
of view due to the various length and structure of the description of each example
combined with taxonomical background knowledge. We have proposed a base-
line approach for integrating taxonomical background knowledge into an ILP
system by implementing sorted refinement operator and extending it to include
taxonomies on predicates.

The efficiency of our approach was demonstrated by comparing it to standard
ILP system Aleph without any support for integration of hierarchical background
knowledge. The results were strongly convincing in favor of the former. In terms
of the volume of search spaced traversed to find a set of frequent patterns, the
‘hierarchy-blind’ search conducted by Aleph maintains a roughly exponential
overhead w.r.t. the ontology-aware refinement, as the maximum pattern size
is being increased. This has a strong consequence in this application domain:
working in spaces of patterns of length greater than 7 literals becomes intractable
for Aleph, while such and longer patterns are important for capturing common
design sequences as exemplified earlier in the text. More experiments comparing
frequent patterns discovered with different types of hierarchies will be performed,
when the CAD design ontology becomes more fine grained. Then also tests of
scalability will be conducted.

Features generated by our system were also used for classification of CAD
designs. Generally speaking, the accuracies obtained through cross-validation
were surprisingly high, which can be ascribed both to the noise-free character of
the data and to the sufficient expressivity of the features our system constructed.
Analyzing the prevailing classification error type, it was discovered that the order
of CAD design features was important for classification, and thus predicates and
rules describing the order of predicates were established.

In future work we will consider a more principled approach of integrating
more complex ontological background knowledge, including recursive definitions
and multiple inheritance, and the order on predicates. The first approach we will
consider in future work is using a hybrid language integrating description logics
and Horn logic similar to AL-log [9] and CARIN [8]. Another approach is using
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a more expressive formalism such as F logic. We will also closely collaborate
with the end users to restrict the form of features.
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Rückert, Ulrich 46
Russell, Stuart 10
Russo, Alessandra 64

Santos Costa, Vı́tor 366
Selman, Bart 25
Shapiro, Ehud 26
Skvortsova, Olga 394
Soares, Tiago 184



456 Author Index

Specia, Lucia 409
Srinivasan, Ashwin 379, 409
Sternberg, Michael 109

Tamaddoni-Nezhad, Alireza 37
Toivonen, Hannu 30
Topp, Simon 214
Topper, Scott E. 366

Uchitel, Sebastian 64
Urazawa, Shinpei 335

Vens, Celine 424
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